The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
Background: Gene silencing by aberrant DNA methylation of promoter regions remains the most dominant phenomenon occurring during tumorigenesis. Improving the early diagnosis, prognosis, and recurrence prediction of colorectal cancer using noninvasive aberrant DNA methylation biomarkers has encouraging potential. The aim of this study is to characterize the DNA methylation of the promoter region of TMEM240, as well as gene expression and its effect on cell biological functions and its applications in early detection and outcome prediction. Results: Highly methylated CpG sites were identified in the TMEM240 gene by Illumina methylation 450K arrays in 26 Taiwanese patient paired samples and 38 paired samples from The Cancer Genome Atlas (TCGA) colorectal cancer dataset. Transient transfection and knockdown of TMEM240 were performed to demonstrate the role of TMEM240 in colorectal cancer cells. The data showed that TMEM240 could lead to G1 cell cycle arrest, repress cancer cell proliferation, and inhibit cancer cell migration. The quantitative methylation-specific real-time polymerase chain reaction (PCR) results revealed that 87.8% (480 of 547) of the colorectal cancer tumors had hypermethylated TMEM240, and this was also found in benign tubular adenomas (55.6%). Circulating cell-free methylated TMEM240 was detected in 13 of 25 (52.0%) Taiwanese colorectal cancer patients but in fewer (28.6%) healthy controls. In 72.0% (85/118) of tissue samples, TMEM240 mRNA expression was lower in Taiwanese CRC tumor tissues than in normal colorectal tissues according to real-time reverse transcription PCR results, and this was also found in benign tubular adenomas (44.4%). The TMEM240 protein was analyzed in South Korean and Chinese CRC patient samples using immunohistochemistry. The results exhibited low protein expression in 91.7% (100/109) of tumors and 75.0% (24/32) of metastatic tumors but exhibited high expression in 75.0% (6/8) of normal colon tissues. Multivariate Cox proportional hazards regression
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.