In response to jasmonates (JAs), the JA receptor Coronatine Insensitive 1 (COI1) recruits JAzinc-finger inflorescence meristem (ZIM)-domain (JAZ) family repressors for destruction to regulate plant growth, development, and defense. As Arabidopsis encodes 13 JAZ repressors, their functional specificity, diversity, and redundancy in JA/COI1-mediated responses remain unclear.We generated a broad range of jaz mutants based on their phylogenetic relationship to investigate their roles in JA responses. The group I JAZ6 may play an inhibitory role in resistance to Botrytis cinerea, group II (JAZ10)/III (JAZ11/12) in JA-regulated root growth inhibition and susceptibility to Pseudomonas syringae pv tomato DC3000, and group IV JAZ3/4/9 in flowering time delay and defense against insects. JAZs exhibit high redundancy in apical hook curvature.
The phytohormones ethylene (ET) and jasmonate (JA) regulate plant development, growth, and defense responses; however, the molecular basis for their signaling crosstalk is unclear. Here, we show that JA-ZIM-domain (JAZ) proteins, which repress JA signaling, repress trichome initiation/branching and anthocyanin accumulation, and inhibit the transcriptional activity of the basic helix-loop-helix (bHLH)-MYB members (GLABRA3 (GL3)-GL1 and TRANSPARENT TESTA 8 (TT8)-MYB75) of WD-repeat/bHLH/MYB (WBM) complexes. The ET-stabilized transcription factors ETHYLENE-INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1) were found to bind to several members of WBM complexes, including GL3, ENHANCER OF GLABRA3 (EGL3), TT8, GL1, MYB75, and TRANSPARENT TESTA GLABRA1 (TTG1). This binding repressed the transcriptional activity of the bHLH-MYB proteins and inhibited anthocyanin accumulation, trichome formation, and defenses against insect herbivores while promoting root hair formation. Conversely, the JA-activated bHLH members GL3, EGL3, and TT8 of WBM complexes were able to interact with and attenuate the transcriptional activity of EIN3/EIL1 at the HOOKLESS1 promoter, and their overexpression inhibited apical hook formation. Thus, this study demonstrates a molecular framework for signaling crosstalk between JA and ET in plant development, secondary metabolism, and defense responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.