Phishing attack, as a significant security concern in cyberspace, has continuously threatened organizations and Internet users. For organizations, the rise in the number of phishing target brands has instilled distrust and dissatisfaction in legitimate Internet users and even damaged brand equity. Therefore, more fine-grained phishing detection mechanisms are urgently needed. In this study, we propose PTI-NN, an effective model based on neural networks that uses category features and images to identify the target brands of phishing websites. We furthermore contribute a new dataset including 3,500 phishing websites and present thirty phishing category features, which facilitate pertinent phishing detection in the field of cyber security. In the proposed PTI-NN, an embedding-based DNN is constructed to process the category features, a 2D-CNN is constructed to process the images, and finally, a fully connected layer is used to predict the target brand of phishing websites. The experimental results show that our proposed model is able to classify seventy phishing-targeted brands with a high accuracy of 91.10%, which showcases the effectiveness of our method on the identification of phishing target brands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.