In this paper, the log-conformation representation method (LCR) is applied in an orthogonal curvilinear coordinate system to study the Giesekus fluid flow in a curved duct. Derivations for evolution equations of LCR in this curvilinear coordinate system are presented. Secondary flow patterns and oscillation solutions are computed by using the collocation spectral method. The influence of a wide range of Dean number, Weissenberg number, and dimensionless mobility parameter α on fluid behaviors is studied. A six-cell secondary flow pattern is found under very low Dean number and relatively high Weissenberg number and α. Moreover, both Weissenberg number and α are able to facilitate the development of the secondary flow. In addition, simulations under critical Reynolds number for oscillation imply that Giesekus fluid flow with [Formula: see text] is not able to retain a four-cell secondary flow pattern in a steady state, which is different from Newtonian fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.