BACKGROUND Direct‐seeded rice has been developed rapidly because of labor savings. Changes in rice cultivation methods put forward new requirements for nitrogen (N) fertilizer management practices. Field experiments with five different fertilizer ratios of basal, tillering and panicle fertilizer, namely N1 (10:0:0), N2 (6:2:2), N3 (4:3:3), N4 (2:4:4) and N5 (0:5:5), were conducted to investigate the effects of different N fertilizer management practices on yield formation, N uptakes, and ammonia (NH3) volatilization from paddy fields in direct‐seeded rice. RESULTS The results showed that the N4 treatment improved grain yield by 5.1% while decreasing NH3 volatilization by 20.4% compared with that of conventional fertilizer treatment (N2). The panicle number per unit area was the key factor to determine the yield of direct‐seeded rice (72%). Excessive N application of basal fertilizer (N1) reduced seedling emergence, N use efficiency, and yield by 45.3%, 160.6%, and 6.9% respectively and increased NH3 volatilization by 28.1% compared with that of the N4 treatment. Removal of basal N fertilizer (N5) N reduced spike number and yield by 13.0% and 6.9% respectively, minimizing NH3 volatilization while affecting the construction of high‐yielding populations compared with that of the N4 treatment. CONCLUSION Optimized N fertilizer management achieved delayed senescence (maintenance of higher leaf Soil Plant Analysis Development meter values in late reproduction), higher canopy photoassimilation (suitable leaf area), higher N fertilizer use efficiency, and less N loss (lower cumulative NH3 volatilization). © 2023 Society of Chemical Industry.
Soil organic matter mineralization changed by land-use types is still not clearly understood. In this study, soils from typical land-use types including adjacent plantations of bamboo (Bam), camphor (Cam), and tea (Tea) were chosen to systematically investigate the role of organic carbon components and microbial community compositions in the organic matter mineralization in Ultisol. The mineralization of organic matter followed the sequence Bam < Cam < Tea. The higher carbon contents of labile pools were in the Cam and the Tea than that in the Bam. The carbon content of dissolved organic matter (DOM) showed the order Bam < Cam < Tea, whereas the complexity of chemical structure in DOM followed the opposite trend. The land-use types significant shifted the bacterial and fungal communities, and the relative abundances of bacterial or fungal phyla of Actinobacteria, Acidobacteria, Firmicutes, and Basidiomycota were significantly different among the land-use types. The multivariate regression tree results showed that the total organic carbon and/or the C/N ratio were dominant factors in influencing the bacterial and fungal communities. Moreover, the redundancy analysis results demonstrated that the communities of bacteria and fungi in Bam, Cam, and Tea were tightly linked to the C/N ratio, the pH and the labile pool I carbon, and the DOM, respectively. The Pearson’s correlation results revealed that the mineralization of organic matter was significantly correlated with the organic carbon components, but generally not the microbial community compositions, which implied that the organic carbon components were perhaps the major determinant in controlling the organic matter mineralization in Ultisol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.