Semantic segmentation of high-resolution aerial images is a concerning issue of remote sensing applications. To address the issues of intra-class heterogeneity and inter-class homogeneity, a novel end-to-end semantic segmentation network, namely Context and Semantic Enhanced High-Resolution Network (CSE-HRNet), is proposed in this paper. Two procedures are considered comprehensively, which are multi-scale contextual feature extractor and multi-level semantic feature producer. Nested Dilated Residual Block (NDRB) is designed firstly, which could enhance the representational power of multi-scale contexts and tackle the issue of intra-class heterogeneity. The pyramidal feature hierarchy is introduced secondly, by which multi-level feature fusions could be utilized to enlarge inter-class semantic differences. Experimental results verify that, based on the Potsdam and Vaihingen benchmarks, the proposed CSE-HRNet can achieve competitive performance compared with other state-of-the-art methods. INDEX TERMS Semantic segmentation, image analysis, machine learning, remote sensing image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.