The recovery of direct dye and acid dye from dilute aqueous solution by adsorption on chitosan fiber, which is cheaper than an activated carbon fiber, appeared technically and economically feasible. The amounts of adsorption of Brilliant Yellow (direct dye) and Acid Orange II (acid dye) on the chitosan fiber were much larger than that for the activated carbon fiber, though these dyes were adsorbed well on the activated carbon fiber too. The experimental equilibrium isotherms were correlated by B.E.T. equation for a finite number of layers. The equilibrium isotherm was affected by the initial concentration of the dye and temperature considerably, but was little affected by coexisting salt NaCl. These dyes were desorbed by dilute aqueous solution of caustic soda, e.g. at 20mol/m3, irreversibly.
Previous studies have shown that current movement is influenced by the previous movement, which is known as the previous trial effect. In this study, we investigated the influence of the inter-trial interval, movement observation, and hand dominance on the previous trial effect of the non-target discrete movement. Right-handed healthy humans abducted the index finger in response to a start cue, and this task was repeated with constant inter-trial intervals. The absolute difference in the reaction time (RT) between the previous and current trials increased as the inter-trial interval increased. The absolute difference in RT reflects the reproducibility of the time taken for the motor execution between two consecutive trials. Thus, the finding supported the view that there is a carryover of movement information from one trial to the next, and that the underlying reproducibility of the RT between the two consecutive trials decays over time. This carryover of movement information is presumably conveyed by implicit short-term memory, which also decays within a short period of time. The correlation coefficient of the RT between the previous and current trials decreased with an increase in the inter-trial interval, indicating that the common responsiveness of two consecutive trials weakens over time. The absolute difference was smaller when the response was performed while observing finger movement, indicating that a carryover of the visual information to the next trial enhances the reproducibility of the motor execution process between consecutive trials. Hand dominance did not influence the absolute difference or correlation coefficient, indicating that the central process mediating previous trial effect of hand movement is not greatly lateralized.
The purpose of the present study is to investigate whether perceptual sensitivity to digital nerve stimulation is modulated by the afferent volley from the digital nerve of a contralateral finger. Fifteen healthy humans participated in this study. A test stimulus was given to the right-hand index finger, and a conditioning stimulus was given to one of the five fingers on the left hand 20, 30, or 40 ms before the test stimulus. The perceptual threshold of the finger stimulation was measured. The perceptual threshold of the test stimulus was significantly increased by a conditioning stimulus to the left-hand index finger given 40 ms before the test stimulus. In contrast, the threshold was not significantly changed by a conditioning stimulus to any finger other than the index finger. Perceptual sensitivity to digital nerve stimulation is suppressed by the afferent volley from the digital nerve of the contralateral homologous finger. This means that the afferent volley from the digital nerve suppresses the homologous finger representation in the ipsilateral somatosensory areas. These findings can be explained by the view that the afferent volley from the digital nerve of the index finger projects to the index finger representation in the contralateral primary sensory cortex and that the interhemispheric transcallosal inhibitory drive is provided from the secondary sensory cortex to the homologous finger representation in the contralateral secondary sensory cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.