We recently developed Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas (KORTUC) as a strategy to increase intratumoral oxygen concentrations and degrade antioxidant enzymes such as peroxidase and catalase. We then developed KORTUC II, which uses sodium hyaluronate containing hydrogen peroxide as a radiosensitizer. KORTUC II requires twice-weekly administration to sustain its effects, but decreasing the frequency of radiosensitizer injections to once-weekly would reduce the burden on the patients and the physicians. The goal of this study was thus to develop a new formulation of KORTUC (New KORTUC) that only requires once-weekly administration. We performed experimental studies using a mouse tumor model and biodegradable hydrogel. C3H/He mice were allocated to control, KORTUC, or hydrogel groups. At 72 h after injection, each tumor was irradiated with a 6 MeV electron beam to a total dose of 30 Gy. During a 62-day observation period, changes in tumor volume and survival rates were assessed in each group. Tumor growth rate was slowest in the hydrogel groups. These data suggest that hydrogel could represent a useful adjunct as a long-acting radiosensitizer in place of sodium hyaluronate. New KORTUC, which contains hydrogen peroxide and hydrogel, exerted a radiosensitizing effect that persisted beyond 72 h following injection of the agent. Use of this new formulation allows radiosensitizer injections to be performed once-weekly with good effect.
Background: We have developed a new radiosensitization treatment called Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II). Using KORTUC II, we performed breast-conserving treatment (BCT) without any surgical procedure for elderly patients with breast cancer in stages I/II or patients refusing surgery. Since surgery was not performed, histological confirmation of the primary tumor region following KORTUC II treatment was not possible. Therefore, to precisely evaluate the response to this new therapy, a detailed diagnostic procedure is needed. The goal of this study was to evaluate the therapeutic response to KORTUC II treatment in patients with stage I/II breast cancer using annual breast contrast-enhanced (CE) magnetic resonance imaging (MRI). Methods: Twenty-one patients with stage I/II breast cancer who were elderly and/or refused surgery were enrolled in this study. All patients underwent MRI prior to and at 3 to 6 months after KORTUC II, and then approximately biannually thereafter. Findings from MRI were compared with those from other diagnostic modalities performed during the same time period. Results: KORTUC II was well tolerated, with minimal adverse effects. All of 21 patients showed a clinically complete response (cCR) on CE MRI. The mean period taken to confirm cCR on the breast CE MRI was approximately 14 months. The mean follow-up period for the patients was 61.9 months at the end of October 2014. Conclusions: The therapeutic effect of BCT using KORTUC II without surgery could be evaluated by biannual CE MRI evaluations. Approximately 14 months were required to achieve cCR in response to this therapy.
We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of −457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.