Along with the development of organic electronics, conductive polymer of PEDOT:PSS has been attracting more and more attention because they possess various novel electrical, optical, and mechanical properties, which render them useful in modern organic optoelectronic devices. Due to its organic nature, it is lightweight and can be fabricated into flexible devices. For better device processing and integrating, it is essential to tune their surface morphologies, and photolithography is the best choice at present. In this paper, current PEDOT:PSS patterning approaches using photolithography are reviewed, and some of our works are also briefly introduced. Appropriate photolithographic patterning process for PEDOT:PSS will enable its application in future organic electronics.
A high directional backlight system that combined a composite microstructure light guide plate (LGP) with a collimated light source was proposed for eco-displays. The collimated planar light was expanded from a point light source and guided towards the normal direction by utilizing the micro-prism array on LGP. High uniformity of spatial luminous, 91%, with a narrow viewing cone of ± 4° can be achieved without additional optical films. Moreover, compared to the conventional backlight, only 5% of power consumption was needed to keep the same luminance, hence, the optical efficiency increased by a factor of 1.47.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.