This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks-the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Topical Review
We study the existence and properties of rogue-wave solutions in different nonlinear wave evolution models that are commonly used in optics and hydrodynamics. In particular, we consider the Fokas-Lenells equation, the defocusing vector nonlinear Schrödinger equation, and the long-wave-short-wave resonance equation. We show that rogue-wave solutions in all of these models exist in the subset of parameters where modulation instability is present if and only if the unstable sideband spectrum also contains cw or zero-frequency perturbations as a limiting case (baseband instability). We numerically confirm that rogue waves may only be excited from a weakly perturbed cw whenever the baseband instability is present. Conversely, modulation instability leads to nonlinear periodic oscillations.
We employ a nonrecursive Darboux transformation formalism for obtaining a hierarchy of rogue wave solutions to the focusing vector nonlinear Schrödinger equations (Manakov system). The exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple, quadruple, and sextuple vector rogue waves, either bright-dark or bright-bright in their respective components, are put forward. Despite the diversity, there exists a universal compossibility that different rogue wave states could coexist for the same background parameters. It is also shown that the higher-order rogue wave hierarchy can indeed be thought of as a nonlinear superposition of a fixed well prescribed number of fundamental rogue waves. These results may help understand the protean rogue wave manifestations in areas ranging from hydrodynamics to nonlinear optics.
Exact explicit rogue wave solutions of the Sasa-Satsuma equation are obtained by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the rogue wave can exhibit an intriguing twisted rogue-wave pair that involves four well-defined zero-amplitude points. This exotic structure may enrich our understanding on the nature of rogue waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.