Gateway reflexes are neural circuits that maintain homeostasis of the immune system. They form gateways for autoreactive T cells to infiltrate the central nervous system in a noradrenaline-dependent manner despite the blood-brain barrier. This mechanism is critical not only for maintaining organ homeostasis but also for inflammatory disease development. Gateway reflexes can be regulated by environmental or artificial stimuli including electrical stimulation, suggesting that the infiltration of immune cells can be controlled by bioelectronic medicine. In this review, we describe the discovery of gateway reflexes and their future directions with special focus on bioelectronic medicine.
SummaryThe gateway reflex explains how autoreactive CD4+ T cells cause inflammation in tissues that have blood-barriers, such as the central nervous system and retina. It depends on neural activations in response to specific external stimuli, such as gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an increase of chemokine expression as well as a reduction of tight junction molecules to accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway reflex with a special interest in mechanosensory transduction (mechanotransduction).
We recently discovered a (to our knowledge) new neuroimmune interaction named the gateway reflex, in which the activation of specific neural circuits establishes immune cell gateways at specific vessel sites in organs, leading to the development of tissue-specific autoimmune diseases, including a multiple sclerosis (MS) mouse model, experimental autoimmune encephalomyelitis (EAE). We have reported that peripheral-derived myeloid cells, which are CD11b+MHC class II+ and accumulate in the fifth lumbar (L5) cord during the onset of a transfer model of EAE (tEAE), play a role in the pain-mediated relapse via the pain-gateway reflex. In this study, we investigated how these cells survive during the remission phase to cause the relapse. We show that peripheral-derived myeloid cells accumulated in the L5 cord after tEAE induction and survive more than other immune cells. These myeloid cells, which highly expressed GM-CSFRα with common β chain molecules, grew in number and expressed more Bcl-xL after GM-CSF treatment but decreased in number by blockade of the GM-CSF pathway, which suppressed pain-mediated relapse of neuroinflammation. Therefore, GM-CSF is a survival factor for these cells. Moreover, these cells were colocalized with blood endothelial cells (BECs) around the L5 cord, and BECs expressed a high level of GM-CSF. Thus, GM-CSF from BECs may have an important role in the pain-mediated tEAE relapse caused by peripheral-derived myeloid cells in the CNS. Finally, we found that blockade of the GM-CSF pathway after pain induction suppressed EAE development. Therefore, GM-CSF suppression is a possible therapeutic approach in inflammatory CNS diseases with relapse, such as MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.