This study aimed to improve the acid resistance effect of Lactobacillus plantarum through microencapsulation with enzymatic hydrolysate of soybean protein isolate (EHSPI) and modified phospholipid. Response surface methodology was adopted to establish the optimal microencapsulation technology of L. plantarum, while coating characters were evaluated. Through response surface methodology, the optimal conditions were obtained as follows based on microencapsulation efficiency: the ratio of bacteria/EHSPI 1:1.83, EHSPI content 4.01%, modified phospholipid content 11.41%. The results of digestion in vitro showed that after passing through the simulated gastric fluid (SGF), the L. plantarum was released and reached 3.55 × 108 CFU/mL in the simulated intestinal fluid. Meanwhile, the surviving bacteria number of control significantly decreased to 2.63 × 104 CFU/mL (P < 0.05) at 120 min in SGF. In sum, the acid resistance and survival of L. plantarum were improved in SGF in vitro, through the microencapsulation technology based on EHSPI.
This research aimed to explore the digestion properties of oil embedded in the soybean protein-phospholipid (PC) nanocomposite aggregate particles through gastrointestinal digestion model. Soybean protein isolate (SPI), before and after enzymatically hydrolyzed, was combined with PC to form SPI-PC and enzymatically hydrolyzed SPI-PC (EHSPI-PC) nanocomposite aggregate particles. In the process of stomach dynamic digestion, the zeta potential of SPI-PC changed from À23.50 to 0.40 mV
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.