Numerous strategies have been proposed to modify and transform passengers’ travel mode and departure time with the purpose of mitigating landside traffic pressure of airports. A core solution to tackle this problem is to build a travel behavior model so that pertinent predictions about the extent to which passengers shift their patterns of travel can hopefully be obtained. This paper aims at studying the passengers’ behaviors with respect to the travel mode and departure time based on agent theory. What distinguishes this model from traditional utility maximization theory is that it specifically places emphasis on the decision-making process with imperfect information and bounded rationality. Passengers continuously renew their knowledge of time management and their surrounding environment in the duration of the Bayesian learning process. It is evident that decisions about whether to substitute their current travel mode and departure time will be given thoughtful consideration before traveling, in relation to their presumptive gain and cost for searching. When performing additional searches, passengers tend to depend on a range of decision-making conditions to determine the necessity of converting to a new travel pattern. The process of both searching and deciding can be indicated by production (if–then) rules. These rules basically stem from the data gathered from Nanjing Lukou International Airport (NKG). Furthermore, this paper studies and discusses to what extent passengers will change their travel behaviors under variable costs of public transportation. Finally, this paper provides some recommendations on how to formulate appropriate subway fares.
To better deploy the landside rapid transit network for large airports, this study proposes a multi-objective transit network design model to maximize passenger demand coverage, reduce passenger travel time and minimize operational cost simultaneously. This model is formulated as an equivalent integer programming problem by predefining the transportation corridors and passengers’ OD pairs. A branch-and-cut algorithm is proposed to find a non-inferior solution set. We also conduct trade-off analysis between efficiency, effectiveness and equity under each deployment strategy using the modified Gini coefficient method. The effectiveness of the proposed model and solution algorithm are tested with rapid transit network of the Beijing Capital International Airport. Results show that among the three common network topologies, including star, tree and finger, the passenger demand coverage and travel time reduction per unit cost under star topology outperform the other two topologies. As for finger topology, the performances of the passenger demand coverage and travel time reduction are the best among the three, but the cost is the poorest. In addition, the trade-off analysis shows that the solution whose objective is to maximize passenger demand coverage has a higher efficiency and a lower unit cost than the solution whose objective is to reduce travel time. However, the latter has a higher level of equity, especially for the medium and low-cost solutions. The proposed method in this study can help the decision makers to design effective landside rapid transit networks for large airports to improve the service level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.