The broadcast nature of air-to-ground line-of-sight (LoS) wireless channel imposes a great challenge in secure unmanned aerial vehicle (UAV) communications. To address this issue, this paper investigates UAV-ground communications from the physical-layer security perspective. Specifically, the investigated scenario includes a UAV serving as the base station (BS) that transmits confidential signals to a legitimate ground user, and there are multiple eavesdroppers on the ground with unknown position information. To further enhance the secrecy performance of the UAV-ground communications, an idle UAV can be employed to serve as a friendly jammer, which can transmit jamming signals to confuse the eavesdroppers. In our proposed strategy, the flying trajectory and the transmit power for both the UAVs are jointly optimized by maximizing the worst-case secrecy rate (WCSR) of the system. Considering the intractability of the formulated non-convex problem, we further provide a block coordinate descent-based iterative optimization method. Simulations verify that our proposed algorithm can significantly improve the average WCSR in comparison with the existing works.INDEX TERMS Worst case secrecy rate, physical layer security, UAV communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.