Solid-state hydrogen storage is the best choice for balancing economy and safety among various hydrogen storage technologies, and hydrogen storage in the secondary phase might be a promising solid-state hydrogen storage scheme. In the current study, to unmask its physical mechanisms and details, a thermodynamically consistent phase-field framework is built for the first time to model hydrogen trapping, enrichment, and storage in the secondary phases of alloys. The hydrogen trapping processes, together with hydrogen charging, are numerically simulated using the implicit iterative algorithm of the self-defined finite elements. Some important results are attained: 1. Hydrogen can overcome the energy barrier under the assistance of the local elastic driving force and then spontaneously enter the trap site from the lattice site. The high binding energy makes it difficult for the trapped hydrogens to escape. 2. The secondary phase geometry stress concentration significantly induces the hydrogen to overcome the energy barrier. 3. The manipulation of the geometry, volume fraction, dimension, and type of the secondary phases is capable of dictating the tradeoff between the hydrogen storage capacity and the hydrogen charging rate. The new hydrogen storage scheme, together with the material design ideology, promises a viable path toward the optimization of critical hydrogen storage and transport for the hydrogen economy.
Orientations, roughnesses, and cavities of crystals are typical factors influencing the servicing reliability of metals in corrosive environments. A phase-field scheme for modeling stress-corrosion coupled damage (SCCD) is developed. The effects of the crystal factors on SCCD are numerically simulated using the incremental-iterative scheme of the user-defined finite elements. The impacts of orientations, roughnesses, and cavities on the corrosion rate of magnesium (Mg) in corrosive environments are discussed quantitatively. It is found that crystal textures and surface roughnesses can significantly influence the diffusion-controlled corrosion rate. Strong basal texture and a smooth surface of the crystal can significantly enhance the corrosion resistance of Mg. The cavity, as a typical crystal defect, is capable of inducing the damage path and modulating the corrosion rate. The design of crystal-scale features, such as orientations, roughnesses, and cavities, is promising for the enhancement of the resistance to SCCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.