Using an AMPT tester and based on laboratory tests, this paper performed a comparative study on the dynamic characteristics of different asphalt mixtures, analyzed the influence of different asphalt binders on the characteristic parameters of the dynamic modulus master curve and the phase angle master curve of asphalt mixture, and expounds the evaluation function of the phase angle master curve for mixture relaxation characteristics. The results show that the modulus master curve parameters of the asphalt mixture are closely related to voids in the mineral aggregate, mixture density, and asphalt content of the asphalt mixture. For the same kind of asphalt mixture, because the gradation of mineral aggregate is fixed and the volume parameters are almost the same, the ultimate modulus of the mixture at different temperatures is unique; when the temperature changes or the asphalt changes, the shape parameter β of the modulus master curve changes regularly, which brings different dynamic responses, and the lower β will show the characteristics of a higher modulus. Asphalt is the source of the viscoelasticity of the asphalt mixture. Although the influence of particle gradation of the mixture will bring about the change of modulus, the phase angle of the mixture depends on the viscoelastic properties of asphalt, and the initial phase angle in the main curve is positively correlated with asphalt penetration and negatively correlated with the softening point and viscosity, while the peak phase angle A is negatively correlated with penetration, and the softening point viscosity is positively correlated. The viscoelastic interval, represented by ω, is negatively correlated with penetration but positively correlated with the softening point and viscosity. The peak position, parameter ωc, of the phase angle master curve can evaluate the relaxation characteristics of the mixture, and the crack resistance of different mixtures can be compared without complex model calculation. In the comparison of the relaxation time of asphalt mixture, the relaxation time of foam cold-recycled mixture is the largest, which is significantly higher than that of other forms of cement mixture; the emulsified asphalt cold-recycled mixture is equivalent to AC20 and LSPM30 mixtures; the SBS-modified asphalt mixture has the best relaxation characteristics.
Polyurethane (PU) mixture is a new pavement material with excellent pavement performance, and most research was focused on the enhancement of pavement performance, but rarely on the dynamic property. This paper studied the factors including gradation, aggregate type, PU type, and PU content, which may influence the dynamic property of the PU mixture. Test results showed that the PU mixture is a kind of linear viscoelastic material, its dynamic modulus and phase angle changed with test temperature and loading frequency, the dynamic modulus would drop by 40%~50% with the temperature raised from 5 °C to 55 °C. All of the factors could affect the dynamic property of the PU mixture which was proved by the analysis of covariance. The effect of gradation did not change with the increase of the nominal maximum aggregate size (NMAS), the dynamic modulus of the PU mixture with limestone was higher than that of the PU mixture with basalt, and the curing speed of PU could affect the ultimate stiffness of the PU mixture, and the increase of the PU content did not help in the increase of the dynamic modulus of the PU mixture. So, more consideration about the selection of gradation, aggregate type, PU type, and PU content should be taken into the design of the PU mixture, which could produce the best pavement structure combination and save more investment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.