Malaria is a mosquito-borne infectious disease, caused by unicellular Apicomplexan protozoa of the genus Plasmodium. The sexual stage of Plasmodium is one of the most fascinating aspects of the Plasmodium life cycle, yet relatively less explored until now. The production of sexually fit gametocytes through gametocytogenesis is essential to the transmission of the Plasmodium parasite into an anopheline mosquito vector. Understanding how gametocytogenesis is regulated promotes the identification of novel drug targets and also the development of transmission-blocking vaccines that would help reduce the disease burden in endemic areas. Transcriptional regulation in Plasmodium parasites is primarily controlled by a family of twenty-seven Apicomplexan Apetela 2 (ApiAP2) genes which act in a cascade to enable the parasite to progress through its asexual replication as well as gametocytogenesis. Here, we review the latest progress made on members of the ApiAP2 family characterized as key players of the transcriptional machinery of gametocytes. Further, we will highlight the transcriptional regulation network of ApiAP2 genes at each stage of gametocytogenesis.
Malaria caused by Plasmodium is still a serious public health problem. Genomic editing is essential to understand parasite biology, elucidate mechanical pathways, uncover gene functions, identify novel therapeutic targets, and develop clinical diagnostic tools. Recent advances have seen the development of genomic diagnostic technologies and the emergence of genetic manipulation toolbox comprising a host of several systems for editing the genome of Plasmodium at the DNA, RNA, and protein level. Genomic manipulation at the RNA level is critical as it allows for the functional characterization of several transcripts. Of notice, some developed artificial RNA genome editing tools hinge on the endogenous RNA interference system of Plasmodium. However, Plasmodium lacks a robust RNAi machinery, hampering the progress of these editing tools. CRISPR-Cas13, which belongs to the VI type of the CRISPR system, can specifically bind and cut RNA under the guidance of crRNA, with no or minimal permanent genetic scar on genes. This review summarizes CRISPR-Cas13 system from its discovery, classification, principle of action, and diagnostic platforms. Further, it discusses the application prospects of Cas13-based systems in Plasmodium and highlights its advantages and drawbacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.