For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.
Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.
Superresolution images reconstructed from single-molecule localizations can reveal cellular structures close to the macromolecular scale and are now being used routinely in many biomedical research applications. However, because of their coordinate-based representation, a widely applicable and unified analysis platform that can extract a quantitative description and biophysical parameters from these images is yet to be established. Here, we propose a conceptual framework for correlation analysis of coordinate-based superresolution images using distance histograms. We demonstrate the application of this concept in multiple scenarios, including image alignment, tracking of diffusing molecules, as well as for quantification of colocalization, showing its superior performance over existing approaches.
Task-based functional magnetic resonance imaging (tfMRI) has been widely used to study functional brain networks under task performance. Modeling tfMRI data is challenging due to at least two problems: the lack of the ground truth of underlying neural activity and the highly complex intrinsic structure of tfMRI data. To better understand brain networks based on fMRI data, data-driven approaches have been proposed, for instance, independent component analysis (ICA) and sparse dictionary learning (SDL). However, both ICA and SDL only build shallow models, and they are under the strong assumption that original fMRI signal could be linearly decomposed into time series components with their corresponding spatial maps. As growing evidence shows that human brain function is hierarchically organized, new approaches that can infer and model the hierarchical structure of brain networks are widely called for. Recently, deep convolutional neural network (CNN) has drawn much attention, in that deep CNN has proven to be a powerful method for learning high-level and mid-level abstractions from low-level raw data. Inspired by the power of deep CNN, in this paper, we developed a new neural network structure based on CNN, called deep convolutional auto-encoder (DCAE), in order to take the advantages of both data-driven approach and CNN's hierarchical feature abstraction ability for the purpose of learning mid-level and high-level features from complex, large-scale tfMRI time series in an unsupervised manner. The DCAE has been applied and tested on the publicly available human connectome project tfMRI data sets, and promising results are achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.