Concern about the impact of fishing on ecosystems and fisheries production is increasing (1, 2). Strategies to reduce these impacts while addressing the growing need for food security (3) include increasing selectivity (1, 2): capturing species, sexes, and sizes in proportions that differ from their occurrence in the ecosystem. Increasing evidence suggests that more selective fishing neither maximizes production nor minimizes impacts (4-7). Balanced harvesting would more effectively mitigate adverse ecological effects of fishing while supporting sustainable fisheries. This strategy, which challenges present management paradigms, distributes a moderate mortality from fishing across the widest possible range of species, stocks, and sizes in an ecosystem, in proportion to their natural productivity (8), so that the relative size and species composition is maintained.
Globally, many fish species are overexploited, and many stocks have collapsed. This crisis, along with increasing concerns over flow-on effects on ecosystems, has caused a reevaluation of traditional fisheries management practices, and a new ecosystem-based fisheries management (EBFM) paradigm has emerged. As part of this approach, selective fishing is widely encouraged in the belief that nonselective fishing has many adverse impacts. In particular, incidental bycatch is seen as wasteful and a negative feature of fishing, and methods to reduce bycatch are implemented in many fisheries. However, recent advances in fishery science and ecology suggest that a selective approach may also result in undesirable impacts both to fisheries and marine ecosystems. Selective fishing applies one or more of the "6-S" selections: species, stock, size, sex, season, and space. However, selective fishing alters biodiversity, which in turn changes ecosystem functioning and may affect fisheries production, hindering rather than helping achieve the goals of EBFM. We argue here that a "balanced exploitation" approach might alleviate many of the ecological effects of fishing by avoiding intensive removal of particular components of the ecosystem, while still supporting sustainable fisheries. This concept may require reducing exploitation rates on certain target species or groups to protect vulnerable components of the ecosystem. Benefits to society could be maintained or even increased because a greater proportion of the entire suite of harvested species is used.balanced exploitation | biodiversity | sustainability | bycatch | 6-S selection
The rule of thumb that fishing mortality to achieve maximum sustainable yield (FMSY) equals natural mortality (M) has been both criticised and supported by theoretical arguments. However, the relationship has been rarely investigated using empirical data. We carried out a meta-analysis on 245 fish species worldwide and linked three types of reference points (FBRP: FMSY, Fproxy, and F0.5r) to M and other life history parameters (LHP). We used Bayesian hierarchical errors-in-variables models to investigate the relationships and included the effect of taxonomic class and order. We compared various models and found that natural mortality is the most important LHP affecting FBRP. Other covariates, such as von Bertalanffy growth coefficient, asymptotic length, maximum age, and habitat types, add little to the relationship, partially because of correlation and large measurement and process errors. The best model results in FMSY = 0.87M (standard deviation (SD) = 0.05) for teleosts and FMSY = 0.41M (SD = 0.09) for chondrichthyans. Fproxy based on per-recruit analysis is about 15% smaller than FMSY. Results could be used to estimate FBRP from LHP in data-poor situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.