The study of polymer aggregation behavior effect on shear resistance shed light on the synthesis of antishear polymer for oil displacement and enhances the application effect of polymer flooding. The effects of mechanical degradation on the properties of polymer solutions were studied by using partially hydrolyzed polyacrylamide (HPAM), hydrophobically modified HPAM (HMPAM), and dendritic hydrophobic associative polymers (DHAP), which are characterized by "granular," "chain," and "cluster" aggregation behavior, respectively. The results show that mechanical shearing can dramatically reduce the performance of polymer solution. The shearing resistance can be effectively enhanced by improving the polymer aggregation behavior. After being strongly sheared, hydrophobically associating polymers can still partially restore its network through hydrophobic association, therefore rebuild the solution viscosity. For DHAP, the broken molecular chains distribute more evenly in solution after shearing. In addition, the strength of reconstructed network structure of DHAP is better than that of HMAPM, which implies a better shear resistance. Furthermore, the hydrophobic association of linear polymers will increase their static adsorption on quartz sand. Meanwhile, DHAP with stronger spatial structure has less static adsorption, which is beneficial to maintain a higher polymer concentration in solution.
In practical applications, the chemical and physical adsorption of a polymer solution greatly affects its action mode and effect. Understanding the adsorption mechanism and its influencing factors can help to optimize the application mode and ensure application efficiency. Three types of polymer solutions—partially hydrolyzed polyacrylamide (HPAM), hydrophobically associating polymer (AP-P4), and dendrimer hydrophobically associating polymer (DHAP), which are viscoelastic liquids—were used as sorbates to study their adsorption by a sorbent such as quartz sand. The effects of the solution concentration, contact time, particle size of quartz sand, solid–liquid ratio, and fluid movement on the adsorption capacity of the polymer solutions were examined. The results showed that HPAM presents a typical Langmuir monolayer adsorption characteristic, and its adsorption capacity (per unit area) is 1.17–1.62 μg/cm2. The association enhances the interactions of the AP-P4 and DHAP solutions, and they present multilayer characteristics of first-order chemical adsorption and secondary physical molecule adsorption. Moreover, the dendrite structure further increases the adsorption thickness of DHAP. Hence, the adsorption thicknesses of AP-P4 and DHAP are four and six times that of HPAM, respectively. The adsorption of the three polymers is consistent with the influence of fluid motion and decreases with increasing fluid velocity. However, the larger the thickness of the adsorption layer, the clearer the influence of the flow, and the higher the decrease in adsorption capacity. Optimizing the injection rate is an effective method to control the applications of a polymer in porous media.
The polymer solution for oil displacement is subjected to strong shear action in practical application, and this action will affect its percolation characteristics in porous media. The effects of mechanical shearing on the solution properties and seepage characteristics of modified hydrophobically associated polymers and dendrimers with two different aggregation behaviours were studied. The results showed that mechanical shearing did not affect hydrophobic microzones. Polymers can re-associate to restore part of the network structure, thereby improving shear resistance (dendritic hydrophobically associating polymers > hydrophobically modified partially hydrolysed polyacrylamide). Polymers with ‘cluster’ aggregation behaviour enhanced solution performance, enabling them to establish higher resistance coefficient (RF) and residual resistance factor (RRF) in porous media but also bringing about injection difficulties. Increasing the injection rate would increase the injection pressure, but the established RF and RRF showed a downward trend. Mechanical shear pretreatment effectively improved the injectability of the polymer. To achieve polymer injection and flow control, pre-shearing polymer solution and low-speed injection can be used in field applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.