Rationale:
Excessive Ang II (angiotensin II) levels lead to a profibrotic and hypertrophic milieu that produces deleterious remodeling and dysfunction in hypertension-associated heart failure. Agents that disrupt Ang II–induced cardiac dysfunction may have clinical utility in the treatment of hypertension-associated heart failure.
Objective:
We have examined the potential effect of celastrol—a bioactive compound derived from the Celastraceae family—on Ang II–induced cardiac dysfunction.
Methods and Results:
In rat primary cardiomyocytes and H9C2 (rat cardiomyocyte-like H9C2) cells, celastrol attenuates Ang II–induced cellular hypertrophy and fibrotic responses. Proteome microarrays, surface plasmon resonance, competitive binding assays, and molecular simulation were used to identify the molecular target of celastrol. Our data showed that celastrol directly binds to and inhibits STAT (signal transducer and activator of transcription)-3 phosphorylation and nuclear translocation. Functional tests demonstrated that the protection of celastrol is afforded through targeting STAT3. Overexpression of STAT3 dampens the effect of celastrol by partially rescuing STAT3 activity. Finally, we investigated the in vivo effect of celastrol treatment in mice challenged with Ang II and in the transverse aortic constriction model. We show that celastrol administration protected heart function in Ang II–challenged and transverse aortic constriction–challenged mice by inhibiting cardiac fibrosis and hypertrophy.
Conclusions:
Our studies show that celastrol inhibits Ang II–induced cardiac dysfunction by inhibiting STAT3 activity.
Evidence indicates that Ang II (angiotensin II) activates STAT3 (signal transducer and activator of transcription 3) in cardiomyocytes. However, the mechanisms underlying STAT3 activation and downstream responses are not fully known. In this study, we show that Ang II caused biphasic STAT3 activation in cardiomyocytes. A rapid and early activation was mediated by direct association between TLR4 (toll-like receptor-4) and STAT3. This early activation increased IL-6 (interleukin-6) production, which in turn, induced the second STAT3 activation through the IL-6/gp130 (glycoprotein 130)/JAK2 (Janus-family tyrosine kinases 2) pathway, resulting in unregulated expression of genes for cardiac remodeling. Moreover, STAT3 inhibition or TLR4 knockout in mice protected against Ang II–induced hypertrophy, fibrosis, and cardiac functional deficits. Thus, Ang II–induced STAT3 activation in cardiomyocytes was biphasic, providing a sequential induction of IL-6 and myocardial remodeling genes, respectively. This work supports a novel mechanism on STAT3 activation in Ang II–induced cardiac dysfunction and remodeling.
Inflammation and oxidative stress play a crucial role in the development of diabetic cardiomyopathy (DCM). We previously had synthesized an Aza resveratrol–chalcone derivative 6b, of which effectively suppressing lipopolysaccharide (LPS)‐induced inflammatory response in macrophages. This study aimed to investigate the potential protective effect of 6b on DCM and underlying mechanism. In H9c2 myocardial cells, 6b potently decreased high glucose (HG)‐induced cell fibrosis, hypertrophy and apoptosis, alleviating inflammatory response and oxidant stress. In STZ‐induced type 1 diabetic mice (STZ‐DM1), orally administration with 6b for 16 weeks significantly attenuated cardiac hypertrophy, apoptosis and fibrosis. The expression of inflammatory cytokines and oxidative stress biomarkers was also suppressed by 6b distinctly, without affecting blood glucose and body weight. The anti‐inflammatory and antioxidative activities of 6b were mechanistic associated with nuclear factor‐kappa B (NF‐κB) nucleus entry blockage and Nrf2 activation both in vitro and in vivo. The results indicated that 6b can be a promising cardioprotective agent in treatment of DCM via inhibiting inflammation and alleviating oxidative stress. This study also validated the important role of NF‐κB and Nrf2 taken in the pathogenesis of DCM, which could be therapeutic targets for diabetic comorbidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.