The past decade has witnessed the rapid development of the SRTM (Shuttle Radar Topography Mission) DEM (digital elevation model) in engineering applications and scientific research. The near-global SRTM DEM was generated based on radar interference theory. The latest version of the SRTM DEM with a resolution of 1 arc-second has been widely used in various applications. However, many studies have shown the poor elevation accuracy of the SRTM DEM in forested areas. Recent developments in the field of spaceborne lidar have provided an additional chance to correct the elevation error of the SRTM DEM in forested areas. We developed an easy-to-use method to correct the elevation error of the SRTM DEM based on the spatial interpolation method using the recent Ice, Cloud and land Elevation Satellite-2 data. First, an ICESat-2 terrain control point selection criterion was proposed to reject some erroneous ICESat-2 terrains caused by many factors. Second, we derived the elevation correction surface based on the interpolation method using the refined ICESat-2 terrain. Finally, a corrected SRTM DEM of forested areas was generated through the obtained elevation correction surface. The proposed method was tested in the typical forested area located in Massachusetts, USA. The results show that the RMSE of the selected terrain control points in vegetation areas and non-vegetation areas are 1.03 and 0.68 m, respectively. The corrected SRTM DEM have an RMSE of 4.2 m which is significantly less than that of the original SRTM DEM with an RMSE of 9.8 m, which demonstrates the proposed method is feasible to correct the elevation error in forested areas. It can be concluded that the proposed method obviously decreases the elevation error of the original SRTM DEM.
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was successfully launched. Due to its small spot size, multibeam configuration, high sampling rate, and strong immunity to terrain slopes, it has been regarded as a powerful tool for forest resources surveying and managing. However, the ICESat-2 photon cloud data contain considerable background photons, which discretely distribute in the background space of signal photons. Therefore, it is necessary to filter these noise photons. In this study, photons are divided into three categories: signal photons, noise photons far away from signal photons, and noise photons adjacent to signal photons. Based on the existing research, forward and backward elliptical distances were used to express the spatial relationship between two photons, and backward local density (BLD) was used to describe the density distribution of the photons. However, the single statistical parameter cannot clearly distinguish three types of photon cloud. Therefore, forward local density (FLD) and neighboring forward local density difference (NFLDD) also were defined to describe the density distribution of the photons. Finally, by combining the support vector machine (SVM), the above three density parameters were used to classify the photons by signal and noise photons. The proposed method was validated with photon cloud data acquired by the Simulated Advanced Terrain Laser Altimeter System (MATLAS), the Multiple Altimeter Beam Experimental Lidar (MABEL), and the ICESat-2 systems over different forested areas. The results demonstrated that the proposed method can well remove the noise photons and retain the signal photons without depending on any statistical assumptions or thresholds. The comprehensive accuracy of the three test sites was 0.99, 0.98, and 0.99, respectively, which was higher than those of the existing method. In addition, the total errors corresponding to the three test sites were about 0.4%, 0.5%, and 1.0% respectively, which were lower than those of the existing method.
The travel source–sink phenomenon is a typical urban traffic anomaly that reflects the imbalanced dissipation and aggregation of human mobility activities. It is useful for pertinently balancing urban facilities and optimizing urban structures to accurately sense the spatiotemporal ranges of travel source–sinks, such as for public transportation station optimization, sharing resource configurations, or stampede precautions among moving crowds. Unlike remote sensing using visual features, it is challenging to sense imbalanced and arbitrarily shaped source–sink areas using human mobility trajectories. This paper proposes a density-based adaptive clustering method to identify the spatiotemporal ranges of travel source–sink patterns. Firstly, a spatiotemporal field is utilized to construct a stable neighborhood of origin and destination points. Then, binary spatiotemporal statistical hypothesis tests are proposed to identify the source and sink core points. Finally, a density-based expansion strategy is employed to detect the spatial areas and temporal durations of sources and sinks. The experiments conducted using bicycle trajectory data in Shanghai show that the proposed method can accurately extract significantly imbalanced dissipation and aggregation events. The travel source–sink patterns detected by the proposed method have practical reference, meaning that they can provide useful insights into the redistribution of bike-sharing and station resources.
Continuous and extensive monitoring of forest height is essential for estimating forest above-ground biomass and predicting the ability of forests to absorb CO2. In particular, forest height at the national scale is an important indicator reflecting the national forestry economic construction, environmental governance, and ecological balance. However, the lack of inventory data restricts large-scale monitoring of forest height to some extent. Conducting manual surveys of forest height for large-scale areas would be labor-intensive and time-consuming. The successful launch of the new generation of spaceborne light detection and ranging (LiDAR) (The Ice, Cloud, and Land Elevation Satellite-2/the Advanced Topographic Laser Altimeter System, ICESat-2/ATLAS) has brought new opportunities for national-scale forestry resource surveys. This paper explores a method to survey national forest canopy height from the new generation of ICESat-2/ATLAS data. In view of the sparse sampling and little overlap between repeated spaceborne LiDAR data, a strategy for assessing the overall change of canopy height for large scales is provided. Some spatially continuous ancillary data were used to assist ICESat-2/ATLAS data to generate a wall-to-wall (spatially continuous) forest canopy height map in China by using the machine learning approach and then quantifying the analysis of forest canopy height in various provinces. The results show that there is a good correlation between the model forest height and the verification data, with a root mean squared error (RMSE) of 3.30 m and a coefficient of determination (R2) of 0.87. This indicates that the method for retrieving national forest canopy height is reliable. There are some limitations in areas with lower vegetation coverage or complex topography which need additional filtering or terrain correction to achieve higher accuracy in measuring forest canopy height. Our analysis suggests that ICESat-2/ATLAS data can achieve the retrieval of national forest height at an overall level, and it would be feasible to use ICESAT-2/ATLAS products to estimate forest canopy height change for large-scale areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.