Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1 secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1 in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1 was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1 and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1 by antigen-presenting cells in an NLRP3-and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1 in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1 through at least two separate mechanisms: by targeting pro-IL-1 for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.IL-1 is an important proinflammatory cytokine, released at sites of infection or injury, that regulates diverse physiological responses, including cellular recruitment, appetite, sleep, and body temperature (1). IL-1 is first produced as a proform in response to inflammatory stimuli, such as TLR ligands. This inactive precursor is cleaved into the bioactive (p17) molecule by caspase 1, following the activation of an inflammasome (2).Inflammasomes are molecular scaffolds that trigger the activation of caspase 1 and subsequent maturation of IL-1 and IL-18. Typically, inflammasomes are formed from at least one member of the cytosolic innate immune sensor family, the NOD-like receptors (NLRs), including NLRP1, NLRP3, and NLRC4, coupled with the adaptor apoptosis-associated specklike protein containing a caspase recruitment domain (ASC or PYCARD) and caspase 1 (2). The NLRP3 inflammasome is the best characterized to date and is activated by a number of endogenous and exogenous signals.Most studies in vitro employ TLR ligands, particularly LPS, to induce pro-IL-1 formation, but in many cases, this is not enough to stimulate inflammasome activation and secretion of the mature cytokine. Instead, a second signal is commonly required, and this can come from a number of endogenous and exogenous sources, including ATP and particulates, including uric acid crystals, amyloid-, silica, asbestos, synthetic microparticles, and alum (3-8). Extracellular ATP triggers the P2X7 ATP-gated ion channel, leading to K ϩ efflux and induces recruitment of the pannexin-1 membrane pore (9). This may then allow extracellular NLRP3 agonists to enter the cell and activate inflammasome assembly (9). Particulates have been proposed to act through one of two mechanisms. Uptake of particulates by phagocytes may lead to lysosomal damage and release of lysosomal products into the cytosol, which a...
CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4+, CD8α+ and CD4−CD8α− double-negative (DN) subsets. CD4+ iNKT cells expanded more readily than CD8α+ and DN iNKT cells upon mitogen stimulation. CD8α+ and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d+ cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4+ and CD8α+ fractions, respectively. Only CD4+ iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α+, DN or CD4+ iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.
Invariant natural killer T (iNKT) cells can provide help for B cell activation and antibody production. Since B cells are also capable of cytokine production, antigen presentation and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of co-culturing expanded human CD4+, CD8α+ and CD4−CD8α− double negative (DN) iNKT cells with autologous peripheral B cells in vitro. All iNKT cell subsets induced IgM, IgA and IgG release by B cells without needing the iNKT cell agonist ligand α-galactosylceramide (α-GC). Additionally, CD4+ iNKT cells induced expansions of cells with phenotypes of regulatory B cells. When co-cultured with α-GC-pulsed B cells, CD4+ and DN iNKT cells secreted Th1 and Th2 cytokines but at 10–1,000-fold lower levels than when cultured with dendritic cells. CD4+ iNKT cells reciprocally induced IL-4 and IL-10 production by B cells. DN iNKT cells expressed the cytotoxic degranulation marker CD107a upon exposure to B cells. Remarkably, while iNKT cell subsets could induce CD40 and CD86 expression by B cells, iNKT cell-matured B cells were unable to drive proliferation of autologous and alloreactive conventional T cells, as seen with B cells cultured in the absence of iNKT cells. Therefore, human CD4+, CD8α+ and DN iNKT cells can differentially promote and regulate the induction of antibody and T cell responses by B cells.
Activation of CD1d-restricted invariant NKT (iNKT) cells with the glycolipid α-galactosylceramide (α-GalCer) confers protection against disease in murine models, however, clinical trials in humans have had limited impact. We synthesized a novel thioglycoside analogue of α-GalCer, denoted α-S-GalCer, and tested its efficacy for stimulating human iNKT cells in vitro. α-S-GalCer stimulated cytokine release by iNKT cells in a CD1d-dependent manner and primed CD1d(+) target cells for lysis. α-S-GalCer-stimulated iNKT cells induced maturation of monocyte-derived dendritic cells into antigen-presenting cells that released IL-12 and small amounts of IL-10. The nature and potency of α-S-GalCer and α-GalCer in human iNKT cell activation were similar. However, in contrast to α-GalCer, α-S-GalCer did not activate murine iNKT cells in vivo. Because of its enhanced stability in biological systems, α-S-GalCer may be superior to α-GalCer as a parent compound for developing adjuvant therapies for humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.