ObjectiveIncreased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST).MethodsNine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters.ResultsThe RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors.ConclusionThere existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.
ObjectivesLumbar disc herniation (LDH) is a musculoskeletal disease that contributes to low back pain, sciatica, and movement disorder. Existing studies have suggested that the immune environment factors are the primary contributions to LDH. However, its etiology remains unknown. We sought to identify the potential diagnostic biomarkers and analyze the immune infiltration pattern in LDH.MethodsThe whole-blood gene expression level profiles of GSE124272 and GSE150408 were downloaded from the Gene Expression Omnibus (GEO) database, including that of 25 patients with LDH and 25 healthy volunteers. After merging the two microarray datasets, Differentially Expressed Genes (DEGs) were screened, and a functional correlation analysis was performed. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and support vector machine recursive feature elimination (SVM-RFE) were applied to identify diagnostic biomarkers by a cross-validation method. Then, the GSE42611 dataset was used as a validation dataset to detect the expression level of these diagnostic biomarkers in the nucleus pulposus and evaluate their accuracy. The hub genes in the network were identified by the CIBERSORT tool and the Weighted Gene Coexpression Network Analysis (WGCNA). A Spearman correlation analysis between diagnostic markers and infiltrating immune cells was conducted to further illustrate the molecular immune mechanism of LDH.ResultsThe azurophil granule and the systemic lupus erythematosus pathway were significantly different between the healthy group and the LDH group after gene enrichment analysis. The XLOC_l2_012836, lnc-FGD3-1, and scavenger receptor class A member 5 were correlated with the immune cell infiltration in various degrees. In addition, five hub genes that correlated with LDH were identified, including AQP9, SIRPB2, SLC16A3, LILRB3, and HSPA6.ConclusionThe XLOC_l2_012836, lnc-FGD3-1, and SCARA5 might be adopted for the early diagnosis of LDH. The five identified hub genes might have similar pathological mechanisms that contribute to the degeneration of the lumbar disc. The identified hub genes and immune infiltrating pattern extend the knowledge on the potential functioning mechanisms, which offer guidance for the development of therapeutic targets of LDH.
BackgroundRoutine rehabilitation services were disrupted by the COVID-19 pandemic outbreak. Telehealth was identified as an alternative means to provide access to these services. This bibliometric study aimed to analyze the scientific literature to discover trends and topics in the potential applications of telerehabilitation for patients with stroke.MethodsThe Web of Science electronic database was searched to retrieve relevant publications on telerehabilitation. Bibliometric data, including visual knowledge maps of authors, countries, institutions, and references, were analyzed in CiteSpace. Visualization maps were generated in VOSviewer to illustrate recurrent keywords and countries actively involved in this research area.ResultsThe analysis was performed based on 6,787 publications. The number of publications peaked between 2019 and 2021, coinciding with the years of the COVID-19 outbreak. A total of 113 countries in Europe, North America, Asia, and Oceania had at least one publication in this research field, implying global attention in this research area. Nine of the top 10 most productive countries are developed countries, indicating a potentially higher capability to implement a telerehabilitation program.ConclusionThe potential benefits and diversity of telerehabilitation are already highly visible from clinical studies, and further improvements in these technologies are expected to enhance functionality and accessibility for patients. More relevant research is encouraged to understand the barriers to increased adaptation of telerehabilitation services, which will finally translate into a significant therapeutic or preventive impact.
BackgroundStroke is among the leading causes of disability of worldwide. Gait dysfunction is common in stroke survivors, and substantial advance is yet to be made in stroke rehabilitation practice to improve the clinical outcome of gait recovery. The role of the upper limb in gait recovery has been emphasized in the literature. Recent studies proposed that four limbs coordinated interventions, coined the term “interlimb-coordinated interventions,” could promote gait function by increasing the neural coupling between the arms and legs. A high-quality review is essential to examine the clinical improvement and neurophysiological changes following interlimb-coordinated interventions in patients with stroke.MethodsSystematic review and meta-analysis will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature will be retrieved from the databases of OVID, MEDLINE, PubMed, Web of Science, EMBASE, and PsycINFO. Studies published in English over the past 15 years will be included. All of the clinical studies (e.g., randomized, pseudorandomized and non-randomized controlled trials, uncontrolled trials, and case series) that employed interlimb intervention and assessed gait function of patients with stroke will be included. Clinical functions of gait, balance, lower limb functions, and neurophysiologic changes are the outcome measures of interest. Statistical analyses will be performed using the Comprehensive Meta-Analysis version 3.DiscussionThe findings of this study will provide insight into the clinical benefits and the neurophysiological adaptations of the nervous system induced by interlimb-coordinated intervention in patients with stroke. This would guide clinical decision-making and the future development of targeted neurorehabilitation protocol in stroke rehabilitation to improve gait and motor function in patients with stroke. Increasing neuroplasticity through four-limb intervention might complement therapeutic rehabilitation strategies in this patient group. The findings could also be insightful for other cerebral diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.