While the characteristics and origin of drusy calcite cement in carbonate deposits is well constrained in the literature, little attention is paid to drusy dolomite cement. Petrographic observations, stable isotopes, and fluid-inclusion microthermometry suggest that drusy dolomite cement in Permo-Triassic conglomerate/breccia dolostone beds in northern United Arab Emirates has precipitated as cement and not by dolomitization of drusy calcite cement. The low δ18OVPDB (−9.4‰ to −6.2‰) and high homogenization temperatures of fluid inclusions in drusy dolomite (Th = 73–233 °C) suggest that dolomitization was caused by hot basinal brines (salinity = 23.4 wt% NaCl eq.). The δ13CVPDB values (+0.18‰ to +1.6‰) and 87Sr/86Sr ratio (0.708106 to 0.708147) indicate that carbon and strontium were derived from the host marine Permo-Triassic carbonates. Following this dolomitization event, blocky calcite (Th = 148 °C; salinity = 20.8 wt% NaCl eq.) precipitated from the hot basinal brines. Unravelling the origin of drusy dolomite cement has important implications for accurate construction of paragenetic sequences in carbonate rocks and decipher the origin and chemistry of diagenetic waters in sedimentary basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.