In response to challenges in land cover classification (LCC), many researchers have experimented recently with classification methods based on artificial intelligence techniques. For LCC mapping of the vegetated Asahi River in Japan, the current study uses deep learning (DL)-based DeepLabV3+ module for image segmentation of aerial photographs. We modified the existing model by concatenating data on its resultant output port to access the airborne laser bathymetry (ALB) dataset, including voxel-based laser points and vegetation height (i.e. digital surface model data minus digital terrain model data). Findings revealed that the modified approach improved the accuracy of LCC greatly compared to our earlier unsupervised ALB-based method, with 25 and 35% improvement, respectively, in overall accuracy and the macro F1-score for November 2017 dataset (no–leaf condition). Finally, by estimating flow-resistance parameters in flood modelling using LCC mapping-derived data, we conclude that the upgraded DL methodology produces better fit between numerically analyzed and observed peak water levels.
Materials and MethodsLigand conjugation of microbubbles. One vial (800 μL) of streptavidin-labeled ultrasound microbubbles (MBs) USphere™ Labeler-LS (TRUST Bio-sonics, Zhubei, Taiwan, ROC) was 4761 This article is freely accessible online.
Recent advancements in remotely sensed techniques have markedly expanded data acquisition potential in riverine studies, but the techniques' applicability must be validated and improved because of uncertainties associated with diverse field conditions. This study is the first experimental evidence of using a newly designed unmanned aerial vehicle (UAV)‐borne green lidar system (GLS) and deep learning‐automated space–time image velocimetry (STIV) for remote investigation of hydraulic and vegetation quantities of the gravel‐bed Asahi River in Okayama Prefecture, Japan. In addition to identifying bed deformation in waters shallower than 2 m, the GLS point clouds characterized the submerged infrastructure with block detailing patterns, thereby identifying positional displacement and severely damaged parts. This paper also presents a noncontact method of estimating incremental river discharge. Compared to benchmarked flow model estimates, remotely sensed discharges for three transects covering shallower, deeper, and partially submerged woody vegetation areas were overestimated by 1–11%, with 4% underestimation for another cross‐section. The STIV analysis also showed complicated flow patterns that were reasonably confirmed by flow vectors from depth‐averaged modeling. Ultimately, depth‐averaged flow model estimates validated hydraulic parameters derived remotely from GLS and STIV, and vice versa. In addition to approximating vegetation growth rates, the study using GLS attributes accurately identified riparian vegetation types as herbaceous (70%), woody (86%), and bamboo groves (65%). Finally, our findings provide insight into the management of shallow clear‐flowing vegetated rivers and remote sensing of streamflow to validate hydrodynamic‐numerical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.