Background Redundancy is a common feature of genomes, presumably to ensure robust growth under different and changing conditions. Genome compaction, removing sequences nonessential for given conditions, provides a novel way to understand the core principles of life. The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system is a unique feature implanted in the synthetic yeast genome (Sc2.0), which is proposed as an effective tool for genome minimization. As the Sc2.0 project is nearing its completion, we have begun to explore the application of the SCRaMbLE system in genome compaction. Results We develop a method termed SCRaMbLE-based genome compaction (SGC) and demonstrate that a synthetic chromosome arm (synXIIL) can be efficiently reduced. The pre-introduced episomal essential gene array significantly enhances the compacting ability of SGC, not only by enabling the deletion of nonessential genes located in essential gene containing loxPsym units but also by allowing more chromosomal sequences to be removed in a single SGC process. Further compaction is achieved through iterative SGC, revealing that at least 39 out of 65 nonessential genes in synXIIL can be removed collectively without affecting cell viability at 30 °C in rich medium. Approximately 40% of the synthetic sequence, encoding 28 genes, is found to be dispensable for cell growth at 30 °C in rich medium and several genes whose functions are needed under specified conditions are identified. Conclusions We develop iterative SGC with the aid of eArray as a generic yet effective tool to compact the synthetic yeast genome.
The model plant Physcomitrium patens (P. patens) has played a pivotal role in enhancing our comprehension of plant evolution, growth, and development. However, the current genome harbors numerous intricate regions that remain unfinished and erroneous. To address these issues, we present an exemplary assembly of the P. patens nuclear genome, which incorporates telomeres and centromere regions, thereby establishing it as the telomere-to-telomere (T2T) genome in a non-seed plant. This T2T genome not only dispels the prevailing misconception regarding chromosome number in P. patens but also provides indispensable resources for conducting in-depth studies in moss genomics and biology.
The genome of an organism is inherited from its ancestor and keeps evolving over time, however, how much the current version could be altered remains unknown. Here, we use the left arm of chromosome XII (chrXIIL) as an example to probe the genome plasticity in Saccharomyces cerevisiae. A neochromosome was designed to harbor originally dispersed genes. The essentiality of sequences in chrXIIL was dissected by targeted DNA removal, chromosome truncation and random deletion. Notably, 12 genes were sufficient for survival, while 25 genes are required to retain robust fitness. Next, we demonstrated these genes could be reconstructed using synthetic regulatory sequences and recoded open-reading frames with "one-amino-acid-one-codon" strategy. Finally, we built a neochromsome, which could substitute for chrXIIL for cell viability, with these reconstructed genes. Our work not only highlights the high plasticity of yeast genome, but also illustrates the possibility of making functional chromosomes with completely artificial sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.