There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin-orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.
Resonant inelastic x-ray scattering (RIXS) has recently been a subject of remarkable progress due to the advent of high-brilliance synchrotron radiation sources. The authors present a review of both experimental and theoretical investigations of electrons in solids using this second-order optical process, in which there is coherent absorption and emission of x rays at resonance with electronic excitations. The review starts with some of the fundamental aspects of RIXS, after which are presented typical experimental data and their theoretical interpretation for various materials. The first class of materials considered is semiconductors and insulators (Si, C, and BN), which are typical systems with weak electron correlation, and the data are interpreted based on electronic states described by an energy-band model. Effects of symmetry of electronic states and electron momentum conservation are discussed. At the opposite extreme are rare-earth systems (metals and oxides), in which the 4f electrons are almost localized with strong electron correlation. The observations are interpreted based on the effects of intra-atomic multiplet coupling and weak interatomic electron transfer, which are well described with an Anderson impurity model or a cluster model. In this context a narrowing of spectral width in the excitation spectrum, polarization dependence, and the magnetic circular dichroism in ferromagnetic materials are discussed. The authors then consider transition-metal compounds, materials with electron correlation strengths intermediate between semiconductors and rare-earth systems. In these interesting cases there is an interplay of intra-atomic and interatomic electronic interactions that leads to limitations of both the band model and the Anderson impurity model. Finally, other topics in resonant x-ray emission studies of solids are described briefly. CONTENTS I. Introduction 203 II. Fundamental Aspects of Resonant Inelastic X-ray Scattering 205 A. Basic description of RIXS 205 B. Experimental measurements 206 C. Theoretical models 208 1. Energy-band model 208 2. Anderson impurity model 208 3. Momentum selection rule 210 4. Normal XES 210 III. RIXS in Semiconductors and Insulators 211 A. Experimental data 211 B. Silicon and graphite 211 C. Effects of core exciton and phonon relaxation 213 IV. Rare-Earth Systems 217 A. Experimental data for rare-earth metals and compounds 217 B. Effect of intra-atomic multiplet coupling 218 C. Effect of interatomic hybridization 221 D. Narrowing of spectral width in the excitation spectrum 223 E. Polarization dependence and magnetic circular dichroism 225 V. Transition-Metal Compounds 228 A. Crystal-field level excitation and charge-transfer excitation in copper oxide systems 228 B. Multiplet coupling effect and spin-dependent excitation spectra in Mn compounds 230 C. Early transition-metal compounds and the effect of carrier doping 232 D. Limitations of the band model and the Anderson impurity model 235 VI. Other Topics 238 A. Simple metals 238 B. Transition metals 239 C. Oxygen...
Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe Se ( = 0.45; superconducting transition temperature = 14.5 kelvin) hosts Dirac-cone-type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below Our study shows that the surface states of FeTeSe are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.
1Recent discovery of both gapped and gapless topological phases in weakly correlated electron systems has introduced various relativistic particles and a number of exotic phenomena in condensed matter physics [1][2][3][4][5] . The Weyl fermion 6-8 is a prominent example of three dimensional (3D), gapless topological excitation, which has been experimentally identified in inversion symmetry breaking semimetals 4,5 . However, their realization in spontaneously time reversal symmetry (TRS) breaking magnetically ordered states of correlated materials has so far remained hypothetical 7, 9, 10 . Here, we report a set of experimental evidence for elusive magnetic Weyl fermions in Mn 3 Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect even at room temperature 11 . Detailed comparison between our angle resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Moreover, our transport measurements have unveiled strong evidence for the chiral anomaly of Weyl fermions, namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. The magnetic Weyl fermions of Mn 3 Sn have a significant technological potential, since a weak field (∼ 10 mT) is adequate for controlling the distribution of Weyl points and the large fictitious field (∼ a few 100 T) in the momentum space. Our discovery thus lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems.Traditionally, topological properties have been considered for the systems supporting gapped bulk excitations 1 . However, over the past few years three dimensional gapless systems such asWeyl and Dirac semimetals have been discovered, which combine two seemingly disjoint notions 2 of gapless bulk excitations and band topology [2][3][4][5] . In 3D inversion or TRS breaking systems, two nondegenerate energy bands can linearly touch at pairs of isolated points in the momentum (k) space, giving rise to the Weyl quasiparticles. The touching points or Weyl nodes act as the unit strength (anti) monopoles of underlying Berry curvature [4][5][6][7] , leading to the protected zero energy surface states also known as the Fermi-arcs 4,5,7 , and many exotic bulk properties such as large anomalous Hall effect (AHE) 12 , optical gyrotropy 13 , and chiral anomaly 6,[14][15][16][17][18][19] . Interestingly, the Weyl fermions can describe low energy excitations of both weakly and strongly correlated electron systems. In weakly correlated, inversion symmetry breaking materials, where the symmetry breaking is entirely caused by the crystal structure rather than the collective properties of electrons, the ARPES has provided evidence for long-lived bulk Weyl fermions and the surface Fermi arcs 4, 5 .On the other hand, the magnetic Weyl fermions have been predicted for several...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.