Using serum biomarkers to assess osteoarthritis (OA) disease state and risks of progression remain challenging. This study tested the hypothesis that changes to serum biomarkers in response to a mechanical stimulus in patients with medial knee OA signal cartilage thickness changes 5 years later. Specifically, serum concentrations of a collagen degradation marker (C1,2C) and a chondroitin sulfate synthesis marker (CS846) were measured 0.5 and 5.5 hours after a 30-min walk in 16 patients. Regional cartilage thickness changes measured from magnetic resonance images obtained at study entry and at 5-year follow-up were tested for correlations with baseline biomarker changes after mechanical stimulus, and for differences between groups stratified based on whether biomarker levels increased or decreased. Results showed that an increase in the degradation biomarker C1,2C correlated with cartilage thinning of the lateral tibia (R = -0.63, p = 0.009), whereas an increase in the synthesis marker CS846 correlated with cartilage thickening of the lateral femur (R = 0.76, p = 0.001). Changes in C1,2C and CS846 were correlated (R = 0.28, p = 0.037). Subjects with increased C1,2C had greater (p = 0.05) medial tibial cartilage thinning than those with decreased C1,2C. In conclusion, the mechanical stimulus appeared to metabolically link the biomarker responses where biomarker increases signaled more active OA disease states. The findings of medial cartilage thinning for patients with increases in the degradation marker and correlation of cartilage thickening in the less involved lateral femur with increases in the synthetic marker were consistent with progression of medial compartment OA. Thus, the mechanical stimulus facilitated assessing OA disease states using serum biomarkers. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:891-897, 2018.
Objectives. The purpose of this study was to compare the efficacy and safety of the Evolut PRO to the Evolut R valve in a real-world setting. Background. The next-generation self-expanding transcatheter aortic valve replacement (TAVR) system, the CoreValve Evolut PRO was designed with an outer pericardial skirt to improve valve-sealing performance. Safety and efficacy of this valve have not previously been compared to its predecessor, the Evolut R valve. Methods. We retrospectively studied 134 patients who underwent TAVR with the Evolut PRO or Evolut R valve over one year at a tertiary center. Endpoints, defined by the Valve Academic Research Consortium-2 criteria, included device success, paravalvular leak (PVL), and a composite safety endpoint including mortality, stroke, major vascular complications, life-threatening bleeding, acute kidney injury, coronary artery obstruction, and repeat procedure for valve-related dysfunction. Results. 60 Evolut PRO and 56 Evolut R patients met the study criteria. Both groups had similar device success rates (90 vs. 89%, p=0.44). Incidence of moderate PVL was similar on discharge (5 vs. 11%, p=0.68) and at 30 days (11 vs. 13%, p=0.79), with nil incidence of severe PVL. There were no mortalities, and the VARC-2 safety endpoint at 30 days was comparable. Conclusion. Despite the additional pericardial skirt and larger sheath size of Evolut PRO, outcomes were comparable between the two Evolut systems, supporting adoption of the newest generation valve in the management of severe aortic stenosis as well as continued use of the Evolut R in patients with smaller vasculature warranting a lower profile device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.