This paper investigates the problem of the global directed dynamic behaviors of a Lotka-Volterra competition-diffusion-advection system between two organisms in heterogeneous environments. The two organisms not only compete for different basic resources, but also the advection and diffusion strategies follow the dispersal towards a positive distribution. By virtue of the principal eigenvalue theory, the linear stability of the co-existing steady state is established. Furthermore, the classification of dynamical behaviors is shown by utilizing the monotone dynamical system theory. This work can be seen as a further development of a competition-diffusion system.
In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system between two competing biological organisms in a spatially heterogeneous environments is investigated. When two biological organisms are competing for different fundamental resources, and their advection and diffusion strategies follow different positive diffusion distributions, the functions of specific competition ability are variable. By virtue of the Lyapunov functional method, we discuss the global stability of a non-homogeneous steady-state. Furthermore, the global stability result is also obtained when one of the two organisms has no diffusion ability and is not affected by advection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.