Summary Fire investigations aim to establish the origin and cause of fires by collecting and analyzing the comprehensive fire‐related evidences. Metallic materials exposed to the fire scene environments are usually subjected to melting and/or high‐temperature oxidation, and they have been considered vital parameters for temperature determination, as recommended in NFPA 921. The oxide characteristics obtained from the conventional fire investigations primarily rely on simple visual observations such as the variations in oxide color, the so‐called “oxidation patterns.” However, such information is not sufficiently convincing due to the complex nature of oxides formed in the fire scene. The oxide color is strongly affected by the type of oxide, the oxide thickness, the concentration of contaminant, and the interactions among different oxides. In this study, Q235 structural steel samples have been exposed to high‐temperature air and simulated kerosene combustion conditions at certain temperatures and for indicated periods. The oxidation rate was examined by thermogravimetric analysis. The morphologies and microstructures of the oxide scales were investigated by scanning electron microscopy, energy dispersive spectroscopy, and X‐ray diffractions. The results show that the oxide properties are strongly dependent on the oxidation temperature and oxidation atmospheres. These oxidation behaviors are expected to provide useful information on identifying fire characteristics.
Summary Among the common materials, metals can be hardly destroyed by flame or the heat emanating from a normal fire. Consequently, investigation on the thermal patterns produced on metallic objects after fire exposure can provide important physical evidence for fire cause/origin determination. Aluminum alloy is widely used in our daily life and the industry; hence, it can be easily found on a domestic or industrial fire scene. In this paper, the aluminum alloy 5052 was exposed in the simulated combustion gases with and without kerosene in the range of 300 to 500°C. Mass change, morphologies, and microstructures of each sample were carefully characterized by thermogravimetric analysis, morphologic observation, and electron microscopy observation with energy‐dispersive spectroscopy analysis after exposure. As expected, the microstructure of alloy changed during high temperature exposure. At the same time, an oxide scale formed and was thickened on the surface of alloy. The results reveal that the temperature can significantly affect the growth of oxide scale and the metallurgical microstructure of alloy. It is noteworthy that the presence of kerosene in the combustion gas accelerated oxidation rate and produced oxide scales different from those formed in air. These feature evolutions in surface oxide are expected to offer complementary insight on determining the fire characteristics, such as the exposure temperature, period and whether liquid accelerant is involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.