We show the manufacturing procedure of the test specimen of the compound bioceramic artificial bone, conduct experiments to measure its fracture toughness, and conclude that the experiment data conform to the two-parameter Weibull distribution with scale parameter β = 0.527369 and form parameter α = 5.24317. Furthermore, compound bioceramic artificial bone is of a high level of crack sensitivity and its data for the fracture toughness is has a high dispersion. We also analyze the evolution of the confidence level of the reliability of its fracture toughness. With the increase of the confidence level γ, the crack sensitivity increases, but the median, the discreteness, and the confidence intervals decrease. The size of the test specimen influences the experiment for the fracture toughness, the measured values and their dispersion, and there exists the conversion between size of the test specimen and that of the real device. We extend the results to introduce the statistic model of the size effect of the fracture toughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.