The Na-K-ATPase, which maintains the Na(+) and K(+) gradients across the plasma membrane, can play a major role in modulation of skeletal muscle contractility. Although both alpha(1)- and alpha(2)-isoforms of the Na-K-ATPase are expressed in skeletal muscle, the physiological significance of these isoforms in contractility is not known. Evaluation of the contractile parameters of mouse extensor digitorum longus (EDL) was carried out using gene-targeted mice lacking one copy of either the alpha(1)- or alpha(2)-isoform gene of the Na-K-ATPase. The EDL muscles from heterozygous mice contain approximately one-half of the alpha(1)- or alpha(2)-isoform, respectively, which permits differentiation of the functional roles of these isoforms. EDL from the alpha(1)(+/-) mouse shows lower force compared with wild type, whereas that from the alpha(2)(+/-) mouse shows greater force. The different functional roles of these two isoforms are further demonstrated because inhibition of the alpha(2)-isoform with ouabain increases contractility of alpha(1)(+/-) EDL. These results demonstrate that the Na-K-ATPase alpha(1)- and alpha(2)-isoforms may play different roles in skeletal muscle contraction.
NF-kappaB is a pleiotropic transcription factor implicated in the regulation of diverse biological phenomena, including apoptosis, cell survival, cell growth, cell division, innate immunity, cellular differentiation, and the cellular responses to stress, hypoxia, stretch and ischemia. In the heart, NF-kappaB has been shown to be activated in atherosclerosis, myocarditis, in association with angina, during transplant rejection, after ischemia/reperfusion, in congestive heart failure, dilated cardiomyopathy, after ischemic and pharmacological preconditioning, heat shock, burn trauma, and in hypertrophy of isolated cardiomyocytes. Regulation of NF-kappaB is complicated; in addition to being activated by canonical cytokine-mediated pathways, NF-kappaB is activated by many of the signal transduction cascades associated with the development of cardiac hypertrophy and response to oxidative stress. Many of these signaling cascades activate NF-kappaB by activating the IkappaB kinase (IKK) complex a major component of the canonical pathway. These signaling interactions occur largely via signaling crosstalk involving the mitogen-activated protein kinase/extracellular signalregulated kinase kinases (MEKKs) that are components of mitogen activated protein kinase (MAPK) signaling pathways. Additionally, there are other signaling factors that act more directly to activate NF-kappaB via IkappaB or by direct phosphorylation of NF-kappaB subunits. Finally, there are combinatorial interactions at the level of the promoter between NF-kappaB, its coactivators, and other transcription factors, several of which are activated by MAPK and cytokine signaling pathways. Thus, in addition to being a major mediator of cytokine effects in the heart, NF-kappaB is positioned as a signaling integrator. As such, NF-kappaB functions as a key regulator of cardiac gene expression programs downstream of multiple signal transduction cascades in a variety of physiological and pathophysiological states. We show that genetic blockade of NF-kappaB reduces infarct size in the murine heart after ischemia/reperfusion (I/R), implicating NF-kappaB as a major determinant of cell death after I/R. These results support the concept that NF-kappaB may be an important therapeutic target for specific cardiovascular diseases.
The relative expression of alpha(1)- and alpha(2)-Na(+)/K(+)-ATPase isoforms found in vascular smooth muscle is developmentally regulated and under hormonal and neurogenic control. The physiological roles of these isoforms in vascular function are not known. It has been postulated that the alpha(1)-isoform serves a "housekeeping" role, whereas the alpha(2)-isoform localizes to a subsarcolemmal compartment and modulates contractility. To test this hypothesis, isoform-specific gene-targeted mice in which the mRNA for either the alpha(1)- or the alpha(2)-Na(+)/K(+)-ATPase isoform was ablated were utilized. Both of these knockouts, alpha(1)(-/-) and alpha(2)(-/-), are lethal; the latter dies at birth, which allows this neonatal aorta to be studied. Isometric force in alpha(2)(-/-)-aorta was more sensitive to contractile agonists and less sensitive to the vasodilators forskolin and sodium nitroprusside (SNP) than wild-type (WT) aorta; alpha(2)(+/-)-aortas had intermediate values. In contrast, neonatal alpha(1)(+/-)-aorta was similar to WT. Western blot analysis indicated a population of 70% alpha(1)- and 30% alpha(2)-isoforms in the WT. Thus in terms of the total Na(+)/K(+)-ATPase protein, the alpha(2)(-/-)-aorta (at 70%) would be similar to the alpha(1)(+/-)-aorta (at 65%) but with a dramatically different phenotype. These data suggest that individual alpha-isoforms of the Na(+)/K(+)-ATPase differ functionally and that the alpha(2)-isoform couples more strongly to activation-relaxation pathways. Three-dimensional image-acquisition and deconvolution analyses suggest that the alpha(2)-isoform is distributed differently than the alpha(1)-isoform. Importantly, these isoforms do not localize to the same regions.
Na,K-ATPase is an ion transporter that impacts neural and glial physiology by direct electrogenic activity and the modulation of ion gradients. Its three isoforms in brain have cell-type and development-specific expression patterns. Interestingly, our studies demonstrate that in late gestation, the ␣2 isoform is widely expressed in neurons, unlike in the adult brain, in which ␣2 has been shown to be expressed primarily in astrocytes. This unexpected distribution of ␣2 isoform expression in neurons is interesting in light of our examination of mice lacking the ␣2 isoform which fail to survive after birth. These animals showed no movement; however, defects in gross brain development, muscle contractility, neuromuscular transmission, and lung development were ruled out. Akinesia suggests a primary neuronal defect and electrophysiological recordings in the pre-Bö tzinger complex, the brainstem breathing center, showed reduction of respiratory rhythm activity, with less regular and smaller population bursts. These data demonstrate that the Na,K-ATPase ␣2 isoform could be important in the modulation of neuronal activity in the neonate.
Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism.Methods: miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1β (IL-1β)-treated primary human chondrocytes (PHCs), and in non-degraded and degraded cartilage. hMSCs and PHCs were transfected with miR-193b-3p or its antisense inhibitor. A direct interaction between miR-193b-3p and its putative binding site in the 3′-untranslated region (3′-UTR) of HDAC3 mRNA was confirmed by performing luciferase reporter assays. Chondrocytes were transfected with miR-193b-3p before performing a chromatin immunoprecipitation assay with an anti-acetylated histone H3 antibody. To investigate miR-193b-3p-transfected PHCs in vivo, they were seeded in tricalcium phosphate-collagen-hyaluronate (TCP-COL-HA) scaffolds, which were then implanted in nude mice. In addition, plasma exosomal miR-193b-3p in samples from normal controls and patients with osteoarthritis (OA) were measured.Results: miR-193b-3p expression was elevated in chondrogenic and hypertrophic hMSCs, while expression was significantly reduced in degraded cartilage compared to non-degraded cartilage. In addition, miR-193b-3p suppressed the activity of reporter constructs containing the 3′-UTR of HDAC3, inhibited HDAC3 expression, and promoted histone H3 acetylation in the COL2A1, AGGRECAN, COMP, and SOX9 promoters. Treatment with the HDAC inhibitor trichostatin A (TSA) increased cartilage-specific gene expression and enhanced hMSCs chondrogenesis. TSA also increased AGGRECAN expression and decreased MMP13 expression in IL-1β-treated PHCs. Further, 8 weeks after implanting PHC-seeded TCP-COL-HA scaffolds subcutaneously in nude mice, we found that miR-193b overexpression strongly enhanced in vivo cartilage formation compared to that found under control conditions. We also found that patients with OA had lower plasma exosomal miR-193b levels than control subjects.Conclusions: These findings indicate that miR-193b-3p directly targets HDAC3, promotes H3 acetylation, and regulates hMSC chondrogenesis and metabolism in PHCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.