New modular chiral phosphines effective for two distinct Cu(I)-catalyzed asymmetric tetrasubstituted-carbon-forming reactions, namely, allylation and propargylation of ketones, were identified. The optimized phosphine 8 was readily synthesized on a gram scale in high yield via three facile transformations (O-alkylation, bisaminal formation, and phosphination) from commercially available materials. In both reactions, excellent enantioselectivity (up to 98% ee) was produced from a range of substrates, including aromatic and aliphatic ketones, using 0.1-5 mol % catalyst loading. Specifically, catalytic enantioselective propargylation was the first example, affording synthetically useful chiral building blocks that have not been easily accessed to date. In addition to the enantioselectivity, the high catalytic activity of the CuOAc-8 complex is noteworthy. Preliminary studies to elucidate the structure-catalyst activity relationship suggested that the high catalytic activity of the Cu-8 complex is due to the extraordinarily wide bite angle ( angleP-Cu-P = 137.8 degrees ), leading to the stabilization of the active monomeric catalytically active species. Furthermore, mechanistically intriguing nonconventional hydrogen bonds existed between the acetate ligand of Cu and the bisaminal hydrogen atoms, stabilizing the distorted tetrahedral coordination state of the Cu atom.
Cytarabine (1-beta-d-arabinofuranosylcytosine, ara-C, 1) suffers from low oral bioavailability due to low intestinal membrane permeability and poor metabolic stability, and intravenous infusion is usually adopted as the clinical standard dosing administration. To develop an oral alternative for 1 and utilize the intestinal oligopeptide transporter 1 (PepT1), a series of 5'-amino acid ester derivatives of 1 was synthesized to clarify which modification was the most suitable to increase the oral bioavailability of 1. Their apical-to-basolateral permeability across Caco-2 cells and the antiproliferative activity with HL-60 cells were screened. 5'-Valyl prodrug 2 demonstrated the highest permeability and was selected for further study. Glycylsarcosine (gly-sar, a typical substrate of PepT1) uptake by Caco-2 cells can be inhibited by 2 in a concentration-dependent manner, and IC(50) for 2 was 2.18 +/- 0.12 mM. The uptake of 2 was markedly increased in the long-term leptin-treated Caco-2 cells compared with the control Caco-2 cells, and was significantly inhibited by the excess of gly-sar, but not by l-valine. A dose-proportional pharmacokinetics was observed in rats when 5, 15, 30 mg/kg doses of 2 (calculated as 1) were orally administered. The oral absolute bioavailability of 1 was 60.0% and 21.8% after 2 and 1 were orally administered to rats 30 mg/kg, respectively. Following oral administration of 15 mg/kg, the absorption and bioactivation of 2 were extensive and rapid, over 98% of prodrug hydrolysis occurring before appearance in the portal vein. The in vivo dispositions of 1-beta-D-arabinofuranosyluracil (ara-U), a deaminated product of 1, were investigated. Oral administration of 2 resulted in an increased 1/ara-U ratio (2.76) in the blood, much higher than that (1.25) after 1 orally taken. Overall, these results demonstrated that the PepT1-mediated absorption of 2 and the increased metabolic stability resulted in a dramatic increase in the oral bioavailability of 1 in rats and further corroborated the thought that prodrug design strategy targeting intestinal PepT1 was an important and promising strategy to improve oral bioavailability of poorly absorbed drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.