Learning diverse features is key to the success of person re-identification. Various part-based methods have been extensively proposed for learning local representations, which, however, are still inferior to the best-performing methods for person re-identification. This paper proposes to construct a strong lightweight network architecture, termed PLR-OSNet, based on the idea of Part-Level feature Resolution over the Omni-Scale Network (OSNet) for achieving feature diversity. The proposed PLR-OSNet has two branches, one branch for global feature representation and the other branch for local feature representation. The local branch employs a uniform partition strategy for part-level feature resolution but produces only a single identity-prediction loss, which is in sharp contrast to the existing part-based methods. Empirical evidence demonstrates that the proposed PLR-OSNet achieves state-of-the-art performance on popular person Re-ID datasets, including Market1501, DukeMTMC-reID and CUHK03, despite its small model size.
A big challenge of person re-identification (Re-ID) using a multi-branch network architecture is to learn diverse features from the ID-labeled dataset. The 2-branch Batch DropBlock (BDB) network was recently proposed for achieving diversity between the global branch and the feature-dropping branch. In this paper, we propose to move the dropping operation from the intermediate feature layer towards the input (image dropping). Since it may drop a large portion of input images, this makes the training hard to converge. Hence, we propose a novel doublebatch-split co-training approach for remedying this problem. In particular, we show that the feature diversity can be well achieved with the use of multiple dropping branches by setting individual dropping ratio for each branch. Empirical evidence demonstrates that the proposed method performs superior to BDB on popular person Re-ID datasets, including Market-1501, DukeMTMC-reID and CUHK03 and the use of more dropping branches can further boost the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.