Energy use in hospitals is higher than other public buildings, so it is essential to investigate and evaluate its energy consumption performance to save energy. In this paper, a comprehensive investigation was conducted to study energy consumption of hospitals in China. The investigation results show that electricity use accounts for the maximum share in total energy consumption of hospitals, especially in south China. Improving air conditioning systems is the most direct and effective way for realizing hospital building energy savings. What’s more, a new evaluation system of energy-saving performance for hospital buildings was developed. This evaluation system could evaluate performance of energy use in hospital, find out the weakness of energy use, and provide improving suggestions. Furthermore, a kind of visual software was given by our paper, which can be used intuitively by practitioners to evaluate building energy consumption performance of a hospital.
Summary
Phase change materials (PCMs) contributed to building energy‐saving and thermal comfort through increasing the thermal capacity of building envelopes. In this study, a phase change material composite was developed by using the PCMs mixture of capric acid (CA) and lauric acid (LA) as the primary phase change energy storage agent and using the solid waste fly ash as a carrier material. The results showed that for Guangdong, the ideal PCMs mixture should have a transition temperature of 25.5oC, which could be obtained by using a mass ratio of CA/LA of 4:6. Then, experiment results also indicate that the optimum adsorption ratio of 2:1 (FA/PCMs) was detected for the synthesis of this FA/PCMs composite, which has the latent heat of 45.38 J/g and exists excellent thermal reliability. Moreover, simulation results by using EnergyPlus show that the proposed composite has a good building energy‐saving effect.
Summary
In hot climate, phase change material (PCM) can be incorporated into building envelopes to reduce heat gain through the building envelopes and therefore reduce its cooling demand. In this study, the energy performance of building envelopes integrated with PCM has been explored using a popular dynamic building performance simulation package, EnergyPlus, and the energy saving mechanism of PCM was investigated. The simulation results reflected that PCM could effectively help to reduce the building's annual energy consumption by 20.9% for Guangzhou, China. In addition, for the Guangzhou city, 27°C transition temperature, smaller thermal conductivity of roof, and higher amount of PCM can all help to improve the building's energy performance. Additionally, it is suggested that in real building development/retrofit projects, the selection of PCM needs to be based on both their thermal properties and the local climatic conditions of the building.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.