Background DNA binding with one finger (Dof) proteins are plant-specific transcription factors playing vital roles in developmental processes and stress responses in plants. Nevertheless, the characterizations, expression patterns, and functions of the Dof family under drought stress (a key determinant of plant physiology and metabolic homeostasis) in woody plants remain unclear. Methods The birch (Betula platyphylla var. mandshuric) genome and plant TFDB database were used to identify Dof gene family members in birch plants. ClustalW2 of BioEdit v7.2.1, MEGA v7.0, ExPASy ProtParam tool, Subloc, TMHMM v2.0, GSDS v2.0, MEME, TBtools, KaKs Calculator v2.0, and PlantCARE were respectively used to align the BpDof sequences, build a phylogenetic tree, identify the physicochemical properties, analyze the chromosomal distribution and synteny, and identify the cis-elements in the promoter regions of the 26 BpDof genes. Additionally, the birch seedlings were exposed to PEG6000-simulated drought stress, and the expression patterns of the BpDof genes in different tissues were analyzed by qRT-PCR. The histochemical staining and the evaluation of physiological indexes were performed to assess the plant tolerance to drought with transient overexpression of BpDof4, BpDof11, and BpDof17 genes. SPSS software and ANOVA were used to conduct all statistical analyses and determine statistically significant differences between results. Results A total of 26 BpDof genes were identified in birch via whole-genome analysis. The conserved Dof domain with a C(x)2C(x)21C(x)2C zinc finger motif was present in all BpDof proteins. These birch BpDofs were classified into four groups (A to D) according to the phylogenetic analysis of Arabidopsis thaliana Dof genes. BpDof proteins within the same group mostly possessed similar motifs, as detected by conserved motif analysis. The exon–intron analysis revealed that the structures of BpDof genes differed, indicating probable gene gain and lose during the BpDof evolution. The chromosomal distribution and synteny analysis showed that the 26 BpDofs were unevenly distributed on 14 chromosomes, and seven duplication events among six chromosomes were found. Cis-acting elements were abundant in the promoter regions of the 26 BpDof genes. qRT-PCR revealed that the expression of the 26 BpDof genes was differentially regulated by drought stress among roots, stems, and leaves. Most BpDof genes responded to drought stress, and BpDof4, BpDof11, and BpDof17 were significantly up-regulated. Therefore, plants overexpressing these three genes were generated to investigate drought stress tolerance. The BpDof4-, BpDof11-, and BpDof17-overexpressing plants showed promoted reactive oxygen species (ROS) scavenging capabilities and less severe cell damage, suggesting that they conferred enhanced drought tolerance in birch. This study provided an in-depth insight into the structure, evolution, expression, and function of the Dof gene family in plants.
Drought stress is a common adverse environment that plants encounter, and many drought-tolerant genes have been characterized. The gene regulatory network (GRN) is important in revealing the drought tolerance mechanism. Here, to investigate the regulatory mechanism of Shanxin poplar (Populus davidiana × P. bolleana) responding to drought stress, a three-layered GRN was built, and the regulatory relationship between genes in the GRN were predicted from expression correlation using a partial correlation coefficient-based algorithm. The GRN contains 1869 regulatory relationships, and includes 11 and 19 transcription factors (TFs) in the first and second layers, respectively, and 158 structural genes in the bottom layers involved in eight enriched biological processes. ChIP-PCR and qRT-PCR based on transient transformation were performed to validate the reliability of the GRN. About 88.0% of predicted interactions between the first and second layers, and 82.0% of predicted interactions between the second and third layers were correct, suggesting that the GRN is reliable. Six TFs were randomly selected from the top layer for characterizing their function in drought, and all of these TFs can confer drought tolerance. The important biological processes related to drought tolerance were identified, including “response to jasmonic acid”, “response to oxidative stress”, and “response to osmotic stress”. In this GRN, PdbERF3 is predicted to play an important role in drought tolerance. Our data revealed the key regulators, TF-DNA interactions, and the main biological processes involved in adaption of drought stress in Shanxin poplar.
Background Armeniaca sibirica seed kernel oil is rich in oleic acid and linoleic acid, thus holding potential value as a source of high-quality edible oils. However, some regulatory factors involved in fatty acids accumulation in A. sibirica seed kernels remain largely elusive. Thus, the aim of this study was to elucidate the regulatory mechanisms underlying fatty acids biosynthesis in A. sibirica developing seed kernels. Methods Seed kernels from six plants from a single A. sibirica clone were taken at five different developmental stages (days 30, 41, 52, 63, and 73 after anthesis). Fatty acid composition in seed kernel oil was determined by gas chromatography-mass spectrometry (GC-MS). In addition, transcriptome analysis was conducted using second-generation sequencing (SGS) and single-molecule real-time sequencing (SMRT). Results Rapid accumulation of fatty acids occurred throughout the different stages of seed kernels development, with oleic acid and linoleic acid as the main fatty acids. A total of 10,024, 9,803, 6,004, 6,719 and 9,688 unigenes were matched in the Nt, Nr, KOG, GO and KEGG databases, respectively. In the category lipid metabolism, 228 differentially expressed genes (DEGs) were annotated into 13 KEGG pathways. Specific unigenes encoding 12 key enzymes related to fatty acids biosynthesis were determined. Co-expression network analysis identified 11 transcription factors (TFs) and 13 long non-coding RNAs (lncRNAs) which putatively participate in the regulation of fatty acid biosynthesis. This study provides insights into the molecular regulatory mechanisms of fatty acids biosynthesis in A. sibirica developing seed kernels, and enabled the identification of novel candidate factors for future improvement of the production and quality of seed kernel oil by breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.