Tyrosinase inhibitors can alleviate the harm to the liver caused by tyrosinase. How to effectively screen out natural tyrosinase inhibitors becomes a focus. In this study, Isodon excisoides was first extracted with the ultrasound optimized by response surface methodology. Then, a method combined ultrafiltration with ultra‐liquid chromatography mass spectrometry (UHPLC/MS) was built to screen and identify tyrosinase inhibitors. The binding energies of active ingredients to tyrosinase were calculated by molecular docking. The reliability of the results was validated by the IC50 of enzyme inhibition assay. As a result, the binding energies of 7 components including excisanin B, lasiokaurin, rabdophyllin G, rabdoserrin B, rabdosin D, rabdosinate and weisiensin were lower than that of resveratrol. It was indicated that these components had high tyrosinase inhibitory activity. The IC50 values of lasiokaurin and excisanin B were 177 and 142 μmol/mL, which were less than that of resveratrol (183 μmol/mL). It showed that this way was simple, rapid, reliable and effective, which provided a new strategy to screen natural bioactive compounds from plants.
Objectives Corni Fructus is one of the most famous traditional Chinese medicines (TCMs) for the treatment of various chronic kidney diseases. Wine-processed Corni Fructus (WCF) is the main processed form of Crude Corni Fructus (CCF). In this study, potential mechanisms of action of CCF and WCF on chronic renal failure (CRF) model were developed to explore wine-processed mechanism of Corni Fructus. Methods An integrated strategy combining metabolomics, network analysis and bioinformatics analysis has been established to investigate the therapeutic mechanisms of WCF and CCF in rats with CRF. Key findings The histopathological results showed that both WCF and CCF improved kidney injury and dysfunction of CRF rats, but WCF was more effective than CCF. Metabolic pathway analysis indicated that 24 metabolites and 5 major disturbed pathways associated with CCF, while WCF regulated 27 metabolites and 2 metabolic pathways. Bioinformatic analysis and network analysis revealed that 8 genes and 7 genes were regulated by CCF and WCF on CRF rats, respectively. The quantitative real-time polymerase chain reaction experiments verified the regulatory ability of CCF and WCF on the expression of 4 genes. Conclusions An integrated strategy combined metabolomics, network analysis and bioinformatics was established to provide valuable holistic insight to explore the processing mechanism of TCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.