Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.
Abstract-Deep convolutional neural networks (CNN) have recently been shown in many computer vision and pattern recognition applications to outperform by a significant margin stateof-the-art solutions that use traditional hand-crafted features. However, this impressive performance is yet to be fully exploited in robotics. In this paper, we focus one specific problem that can benefit from the recent development of the CNN technology, i.e., we focus on using a pre-trained CNN model as a method of generating an image representation appropriate for visual loop closure detection in SLAM (simultaneous localization and mapping). We perform a comprehensive evaluation of the outputs at the intermediate layers of a CNN as image descriptors, in comparison with state-of-the-art image descriptors, in terms of their ability to match images for detecting loop closures. The main conclusions of our study include: (a) CNN-based image representations perform comparably to state-of-the-art handcrafted competitors in environments without significant lighting change, (b) they outperform state-of-the-art competitors when lighting changes significantly, and (c) they are also significantly faster to extract than the state-of-the-art hand-crafted features even on a conventional CPU and are two orders of magnitude faster on an entry-level GPU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.