Background Intensive malaria transmission along international borders is a significant impediment to malaria elimination in the Greater Mekong Subregion (GMS) of Southeast Asia. Passive case detection (PCD) was used to study the dynamics and trends of malaria transmission at the China–Myanmar border to provide epidemiologic information for improved malaria control. Methods PCD was conducted in one hospital and 12 clinics near the Laiza town in northeast Myanmar from 2011 to 2016. Clinical malaria was diagnosed by microscopy and demographic information was captured using a structured questionnaire at the time of the patient’s presentation for care. Results Over the study period, 6175 (19.7%) malaria cases were confirmed by microscopy from 31,326 suspected cases. The four human malaria parasite species were all identified, with Plasmodium vivax and Plasmodium falciparum accounting for 5607 (90.8%) and 481 (7.8%) of the confirmed cases, respectively. In contrast to the steady decline of malaria in the general GMS, the study site had an upward trend of malaria incidence with vivax malaria outbreaks in 2013 and 2016. Adult males, children under the age of 15, and those with occupations such as farming, being a soldier or student, had significantly higher risks of clinical malaria compared to having fevers from other aetiologies. A self-reported history of clinical malaria was also associated with a higher risk of confirmed malaria. Conclusions The China–Myanmar border area has experienced an overall upward trend of malaria incidence in recent years with P. vivax becoming the predominant species. Evidence-based control strategies need to focus on high-risk populations.
Mutations in the Kelch domain of the K13 gene (PF3D7_1343700) were previously associated with artemisinin resistance in Plasmodium falciparum . This study followed the dynamics of the K13 polymorphisms in P. falciparum parasites from the China-Myanmar border area obtained in 2007–2016, and their in vitro sensitivities to artesunate (AS) and dihydroartemisinin (DHA). The 50% effective concentration (EC 50 72h ) values of 133 culture-adapted field isolates to AS and DHA, measured by the conventional 72 h SYBR Green I-based assay, varied significantly among the parasites from different years; all were significantly higher than that of the reference strain 3D7. Compared with parasites from 2007 to 2008, ring survival rates almost doubled in parasites obtained in later years. Sequencing the full-length K13 genes identified 11 point mutations present in 85 (63.9%) parasite isolates. F446I was the predominant (55/133) variant, and its frequency was increased from 17.6% (3/17) in 2007 to 55.9% (19/34) in 2014–2016. No wild-type (WT) Kelch domain sequences were found in the 34 samples obtained from 2014 to 2016. In the 2014–2016 samples, a new mutation (G533S) appeared and reached 44.1% (15/34). Collectively, parasites with the Kelch domain mutations (after amino acid 440) had significantly higher ring survival rates than the WT parasites. Individually, F446I, G533S and A676D showed significantly higher ring survival rates than the WT. Although the drug sensitivity phenotypes measured by the RSA 6h and EC 50 72h assays may be intrinsically linked to the in vivo clinical efficacy data, the values determined by these two assays were not significantly correlated. This study identified the trend of K13 mutations in parasite populations from the China-Myanmar border area, confirmed an overall correlation of Kelch domain mutations with elevated ring-stage survival rates, and emphasized the importance of monitoring the evolution and spread of parasites with reduced artemisinin sensitivity along the malaria elimination course.
Multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion of Southeast Asia is a major threat to malaria elimination and requires close surveillance. In this study, we collected 107 longitudinal clinical samples of P. falciparum in 2007–2012 from the malaria hypoendemic region of the China-Myanmar border and measured their in vitro susceptibilities to 10 antimalarial drugs. Overall, parasites had significantly different IC50 values to all the drugs tested as compared to the reference 3D7 strain. Parasites were also genotyped in seven genes that were associated with drug resistance including pfcrt, pfmdr1, pfmrp1, pfdhfr, pfdhps, pfnhe1, and PfK13 genes. Despite withdrawal of chloroquine and antifolates from treating P. falciparum, parasites remained highly resistant to these drugs and mutations in pfcrt, pfdhfr, and pfdhps genes were highly prevalent and almost reached fixation in the study parasite population. Except for pyronaridine, quinine and lumefantrine, all other tested drugs exhibited significant temporal variations at least between some years, but only chloroquine and piperaquine had a clear temporal trend of continuous increase of IC50s. For the pfmrp1 gene, several mutations were associated with altered sensitivity to a number of drugs tested including chloroquine, piperaquine, lumefantrine and dihydroartemisinin. The association of PfK13 mutations with resistance to multiple drugs suggests potential evolution of PfK13 mutations amid multidrug resistance genetic background. Furthermore, network analysis of drug resistance genes indicated that certain haplotypes associated multidrug resistance persisted in these years, albeit there were year-to-year fluctuations of the predominant haplotypes.
Background: Chloroquine (CQ) and primaquine (PQ) remain the frontline drugs for radical cure of uncomplicated P. vivax malaria in the Greater Mekong Sub-region (GMS). Recent reports of decreased susceptibility of P. vivax to CQ in many parts of the GMS raise concerns.Methods: From April 2014 to September 2016, 281 patients with uncomplicated P. vivax infection attending clinics in border settlements for internally displaced people in northeast Myanmar were recruited into this study. Patients were treated with standard regimen of 3-day CQ and concurrent 14-day PQ (3.5 mg/kg total dose) as directly observed therapy, and followed for recurrent parasitemia within 28 days post-patency.Results: Within the 28-day follow-up period, seven patients developed recurrent parasitemia, resulting in a cumulative rate of parasite recurrence of 2.6%. Five of the seven parasitemias recurred within two weeks, and two of those failed to clear within seven days, indicating high-grade resistance. Conclusion:Although failure of CQ/PQ treatment of P. vivax was relatively infrequent in northeast Myanmar, this study nonetheless confirms that CQ/PQ-resistant strains do circulate in this area, some of them of a highly resistant phenotype. It is thus recommended that patients who acquire vivax malaria in Myanmar be treated an artemisinin-combination therapy along with hypnozoitocidal primaquine therapy to achieve radical cure.
BackgroundThe baseline incidence of the adverse events of statin therapy varies between countries. Notably, Chinese patients seem more susceptible to myopathy induced by simvastatin.ObjectivesThis research studies the adverse drug reactions (ADRs) of statin therapy in China by analysing trial-based data from the Anti-hyperlipidaemic Drug Database built by the China National Medical Products Administration Information Centre.MethodsAll clinical trials involving statin therapy (including simvastatin, atorvastatin, fluvastatin, lovastatin, pravastatin and rosuvastatin) in China from 1989 to 2019 were screened. In total, 569 clinical studies with 37 828 patients were selected from 2650 clinical trials in the database.ResultsAmong the reported cases with ADRs (2822/37 828; 7.460%), gastrointestinal symptoms were the most common (1491/37 828; 3.942%), followed by liver disease (486/37 828; 1.285%), muscle symptoms (444/37 828; 1.174%) and neurological symptoms (247/37 828; 0.653%). Pravastatin (231/1988; 11.620%) caused the most common gastrointestinal side effects, followed by fluvastatin (333/3094; 10.763%). The least likely to cause gastrointestinal irritation was rosuvastatin (82/1846; 4.442%).ConclusionIn Chinese clinical trials, gastrointestinal symptoms were the most common ADR of statin use for hyperlipidaemia and other cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.