A native isolate of Pleurotus ostreatus HP-1 (Genbank Accession No. EU420068) was found to have an excellent laccase producing ability. The extracellular laccase was purified to electrophoretic homogeneity from copper sulphate induced solid-state fermentation medium by ammonium sulphate precipitation and ion-exchange chromatography. The enzyme was determined to be monomeric protein with an apparent molecular mass of 68,420 kDa, and an isoelectric point (pI) of 3.5. The inductively coupled plasma spectroscopy showed a presence of iron, zinc and copper in the purified enzyme. The absorption spectrum in the range of 200–700 nm showed the maximum absorption at 610 nm characteristic of fungal laccase and corresponding to the presence of type I copper atom. The laccase was stable at different temperatures up to 70 °C and retained 61 % activity at 50 °C. The enzyme reaction was inhibited by cysteine; sodium azide and EDTA. The enzyme oxidized various known laccase substrates, its lowest Km value being for ortho-dianisidine and highest Kcat and Kcat/Km for ABTS. The purified laccase exhibited different pH optima for different substrates. The N-terminal sequence did not show any similarity with N-terminal sequence of other species of genera Pleurotus.
Hydrocarbon pollution is a perennial problem not only in India but throughout the globe. A plethora of microorganisms have been reported to be efficient degraders of these recalcitrant pollutants. One of the major concerns of environmental problem is the presence of hydrocarbons due to the various anthropogenic activities. PAHs are ubiquitous in naturei.e.present in soil, water and air. Presence of PAHs in environment creates problem as their presence have deleterious effect on human and animals. They also have the ability to cause the tumors in human and animals. Some of the microorganisms are capable of transforming and degrading these PAHs and remove them from the environment. The present review describes about the sources, structure, fate and toxicity of PAHs as well as different bioremediation techniques involved in the removing of contaminants from the environment which are efficient and cost-effective. The conventional approaches used for removal of PAH are not only environment friendly but also are able to reduce the risk to human and ecosystem.
Exopolysaccharides (EPS) of fungal origin have attracted special attention from researchers due to their multifarious applications in the food and pharmaceutical industries. In the present study, optimization of the process parameters for the production of exopolysaccharide by Schizophyllum commune AGMJ-1 was studied using one factor at a time (OFAT) method, Plackett–Burman design (PBD) and response surface methodology (RSM). OFAT method revealed xylose and yeast extract to be the most effective carbon and nitrogen sources and pH 5.3 as an optimum for maximum EPS production. Xylose, yeast extract and KCl were screened as statistically significant variables for EPS production using PBD. RSM based on the central composite design estimated that maximum EPS (4.26 g L−1), mycelial biomass (14 g L−1) and specific yield (0.45 g g−1) were obtained when concentration of xylose, yeast extract and KCl were set at 2.5 g % (w/v), 0.83 g % (w/v) and 6.53 mg % (w/v), respectively, in the production medium.
Immobilization of enzyme with nanostructures enhances its ideal characteristics, which may allow the enzyme to become more stable and resistant. The present investigation deals with the formulation of laccase nanosilica conjugates to overcome the problems associated with its stability and reusability. Synthesized nanosilica and laccase nanoparticles were spherical shaped, with the mean size of 220 and 615 nm, respectively. Laccase nanoparticles had an optimum temperature of 55°C and pH 4.0 for the oxidation of ABTS. Laccase nanoparticle retained 79% of residual activity till 20th cycle. It also showed 91% of its initial activity at lower temperatures even after 60 days. Laccase nanoparticles were applied for Reactive Violet 1 degradation wherein 96.76% of decolourization was obtained at pH 5.0 and 30°C within 12 h. Toxicity studies on microbes and plants suggested that the degraded metabolites were less toxic than control dye. Thus, the method applied for immobilization increased storage stability and reusability of laccase, and therefore, it can be utilized for efficient degradation of azo dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.