Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.
The oncogenic activation of the ETS related gene (ERG) due to gene fusions is present in over half of prostate cancer (CaP) in Western countries. Due to its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for CaP. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified; confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG positive VCaP cells led to decreased levels of NOTCH-1 and -2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH-1 and -2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative CaP) and RWPE-1 (benign prostate derived immortalized) cells. Furthermore, inhibition of NOTCH by the small molecule gamma-Secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (Bicalutamide, Enzalutamide,) or the androgen biosynthesis inhibitor (Abiraterone) in VCaP cells. Combined treatment with Bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive CaP cells. Implications Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers.
The androgen receptor is one of the key targets for prostate cancer treatment. Despite its less satisfactory effects, chemotherapy is the most common treatment option for metastatic and/or castration-resistant patients. There are constant needs for novel anti-prostate cancer therapeutic/prevention agents. Curcumin, a known chemo-preventive agent, was shown to inhibit prostate cancer cell growth. This study aimed to unravel the inhibitory effect of curcumin in prostate cancer through analyzing the alterations of expressions of curcumin targeting genes clusters in androgen-dependent LNCaP cells and androgen-independent metastatic C4-2B cells. Hierarchical clustering showed the highest number of differentially expressed genes at 12 h post treatment in both cells, suggesting that the androgen-dependent/independent manner of curcumin impacts on prostate cancer cells. Evaluation of significantly regulated top canonical pathways highlighted that Transforming growth factor beta (TGF-β), Wingless-related integration site (Wnt), Phosphoinositide 3-kinase/Protein Kinase B/ mammalian target of rapamycin (PIK3/AKT(PKB)/mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling were primarily inhibited, and Phosphatase and tensin homolog (PTEN) dependent cell cycle arrest and apoptosis pathways were elevated with curcumin treatment. The short term (3–24 h) and long term (48 h) effect of curcumin treatment revealed 31 and four genes modulated in both cell lines. TGF-β signaling, including the androgen/TGF-β inhibitor Prostate transmembrane protein androgen-induced 1 (PMEPA1), was the only pathway impacted by curcumin treatment after 48 h. Our findings also established that MYC Proto-Oncogene, basic helix-loop-helix (bHLH) Transcription Factor (MYC) signaling was down-regulated in curcumin-treated cell lines. This study established, for the first time, novel gene-networks and signaling pathways confirming the chemo-preventive and cancer-growth inhibitory nature of curcumin as a natural anti-prostate cancer compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.