In recent decades advances in radiation imaging and radiation therapy have led to a dramatic increase in the number of people exposed to radiation. Consequently, there is a clear need for personalized biodosimetry diagnostics in order to monitor the dose of radiation received and adapt it to each patient depending on their sensitivity to radiation exposure (Hall E.J. and Brenner D. J., 2008). Similarly, after a large-scale radiological event such as a dirty bomb attack, there will be a major need to assess, within a few days the radiation doses received by tens of thousands of individuals. Current high throughput devices can handle only a few hundred individuals per day. Hence there is a great need for a very fast self-contained non-invasive biodosimetric device based on a rapid blood test. This paper presents a case study where regression methods and designed experiments are used to arrive at the optimal settings for various factors that impact the kinetics in a biodosimetric device. We use ridge regression to initially identify a set of potentially important variables in the mixing process which is one of the critical sub systems of the device. This was followed by a series of designed experiments to arrive at the optimal setting of the significant microfluidic cartridge and piezoelectric disk (PZT) (D. Sadler, F. Zenhausern, U.S. Patent 6,986,601; Lee, S. Y., Ko, B., Yang, W., 2005) related factors. This statistical approach has been utilized to study the microfluidic mixing to mix water and dye mixtures of 70 μl volume. The outcome of the statistical design, experimentation and analysis was then exploited for optimizing the design, fabrication and assembly of the microfluidic devices. As a result of the experiments that were performed, the system was fine tuned and the mixing time was reduced from 5.5 minutes to 2 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.