The syndrome called COVID‐19 which was firstly spread in Wuhan, China has already been declared a globally “Pandemic.” To stymie the further spread of the virus at an early stage, detection needs to be done. Artificial Intelligence‐based deep learning models have gained much popularity in the detection of many diseases within the confines of biomedical sciences. In this paper, a deep neural network‐based “LiteCovidNet” model is proposed that detects COVID‐19 cases as the binary class (COVID‐19, Normal) and the multi‐class (COVID‐19, Normal, Pneumonia) bifurcated based on chest X‐ray images of the infected persons. An accuracy of 100% and 98.82% is achieved for binary and multi‐class classification respectively which is competitive performance as compared to the other recent related studies. Hence, our methodology can be used by health professionals to validate the detection of COVID‐19 infected patients at an early stage with convenient cost and better accuracy.
Script identification from complex and colorful images is an integral part of the text recognition and classification system. Such images may contain twofold challenges: (1) Challenges related to the camera like blurring effect, non-uniform illumination and noisy background, and so on, and (2) Challenges related to the text shape, orientation, and text size. The present work in this area is much focused on non-Indian scripts. In contrast, Gurumukhi, Hindi, and English scripts play a vital role in communication among Indians and foreigners. In this article, we focus on the above said challenges in the field of identifying the script. Additionally, we have introduced a new dataset that contains Hindi, Gurumukhi, and English scripts from scenic images collected from different sources. We also proposed a CNN-based model, which is capable of distinguishing between the scripts with good accuracy. Performance of the method has been evaluated for own dataset, i.e., NITJDATASET and other benchmarked datasets available for Indian scripts, i.e., CVSI-2015 (Task-1 and Task 4) and ILST. This work is an extension to find the script from strict text background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.