In this present work, we have synthesized silver nanoparticles (AgNPs) using the chemical reduction method and systematically studied the effect of AgNPs of different loading into polyvinyl alcohol/sodium bromide (PVA/NaBr) polymer electrolytes. X‐ray diffraction and Fourier transform infrared spectroscopy confirmed the variation in the crystallinity and complexation with AgNPs loading, respectively. AgNPs are uniformly distributed in the polymer matrix as depicted in FESEM. According to transport property studies, it is observed that carrier concentration has a strong influence on ionic conductivity. Additionally, I‐t studies showed that most charge carriers are ions and not electrons. The sample PVA/NaBr with AgNPs, prepared from 6 mM AgNO3 solution (PNAg6) with ionic conductivity 1.22 × 10−4 S cm−1 (one order increase with respect to undoped sample) and highest electrochemical stability window (ESW) of 2.86 V, can be chosen as a suitable candidate for energy storage device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.