Role of respiration in plant growth remains an enigma. Growth of meristematic cells, which are not photosynthetic, is entirely driven by endogenous respiration. Does respiration determine growth and size or does it merely burn off the carbon depleting the biomass? We show here that respiration of the germinating rice seed, which is contributed largely by the meristematic cells of the embryo, quantitatively correlates with the dynamics of much of plant growth, starting with the time for germination to the time for flowering and yield. Seed respiration appears to define the quantitative phenotype that contributes to yield via growth dynamics that could be discerned even in commercial varieties, which are biased towards higher yield, despite considerable susceptibility of the dynamics to environmental perturbations. Intrinsic variation, irreducible despite stringent growth conditions, required independent validation of relevant physiological variables both by critical sampling design and by constructing dendrograms for the interrelationships between variables that yield high consensus. More importantly, seed respiration, by mediating the generation clock time via variable time for maturation as seen in rice, directly offers the plausible basis for the phenotypic variation, a major ecological stratagem in a variable environment with uncertain water availability. Faster respiring rice plants appear to complete growth dynamics sooner, mature faster, resulting in a smaller plant with lower yield. Counter to the common allometric views, respiration appears to determine size in the rice plant, and offers a valid physiological means, within the limits of intrinsic variation, to help parental selection in breeding.
Plant respiration, similar to respiration in animal mitochondria, exhibits both osmosensitive and insensitive components with the clear distinction that the insensitive respiration in plants is quantitatively better described as 'less' sensitive rather than 'insensitive'. Salicylic hydroxamic acid (SHAM)-sensitive respiration was compared with the respiration sensitive to other inhibitors in rice, yeast and Dunaliella salina. The influence of SHAM was largely in the osmotically less sensitive component and enhanced with external osmotic pressure unlike other inhibitors that inhibited the osmotically sensitive component. SHAM inhibited germination and root growth but not shoot growth. Osmotic remediation of respiration that developed in due course of time with rice seedlings was abolished by SHAM and was not due to water and ionic uptake mechanisms. Yeast and Dunaliella also showed susceptibility of growth and respiration to SHAM. Glycerol retention was influenced by all inhibitors, while growth was inhibited demonstrably by SHAM in Dunaliella. Respiration in plants needs to be seen as a positive contribution to overall growth and not merely for burning away of the biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.