Aiming to successfully meet the requirements of a large output torque and a wide range of flux weakening speed expansion in permanent magnet synchronous motors (PMSM) for electric vehicles, a novel surface insert permanent magnet synchronous motor (SIPMSM) is developed. The method of notching auxiliary slots between the magnetic poles in the rotor and unequal thickness magnetic poles is proposed to improve the performance of the motor. By analyzing the magnetic circuit characteristics of the novel SIPMSM, the notching auxiliary slots between the adjacent magnetic poles can affect the q-axis inductance, and the shape of magnetic pole effects the d-axis inductance of the motor. The combined action of the two factors not only weakens the cogging torque, but also improves the flux weakening capability of the motor. In this paper, the response surface methodology (RSM) is used to establish a mathematical model of the relationship between the structural parameters of the motor and the optimization objectives, and the optimal design of the motor is completed by solving the mathematical model. Experimental validation has been conducted to show the correctness and effectiveness of the proposed SIPMSM.
Aiming at the disadvantages of large leakage flux and low magnetic flux density of radial magnetic circuit and tangential magnetic circuit, a new type of permanent magnet (PM) rotor with parallel tangential and radial magnetic circuits is proposed. Based on Ohm’s law and Kirchhoff’s law of magnetic circuits, equivalent magnetic circuits for rotor poles are developed. The structure parameters of the generator are preliminarily determined. At the same time, by means of the Taguchi method and employing finite element analysis, the rotor poles of generator are optimized to improve air gap magnetic density, the cogging torque, and the distortion of back-EMF waveform. Finally, the validity of proposed design methods is validated by the analytical and experimental results.
In this study, the tangential magnetic field Nd-Fe-B permanent magnet generator is designed and analyzed. In the generator, the adjacent permanent steel is sequentially arranged on the radial groove by the way of same polarity-oriented manner. The optimal design parameters of the generator are obtained by analyzing the influence rule of the generator leakage magnetic flux and leakage coefficient which is affected by the change in rotor pole pairs, permanent steel thickness, magnetic isolation air width, and air-gap length. The mathematical model of the magnetic field is developed and analyzed using the finite element method. Using the finite element method model, the diagrams of magnetic force line distribution, magnetic flux density modulus value, and magnetic flux density vector are obtained, which can be used to verify the validity of the main design parameters. A three-phase half-wave impulse-type controlled rectifier voltage regulator is developed with the function of regulator and rectifier, which proposes a solution to the output voltage instability of the Nd-Fe-B permanent magnet generator in a wide speed and load range.
With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is difficult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low efficiency and high failure rate. In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor, and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis (FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electromagnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.