The synthesis of ultra-long high-quality zinc sulfide (ZnS) nanowires of uniform size on heterogeneous substrates is highly desirable for investigating the fundamental properties of ZnS nanowires and for fabricating integrated functional nanodevices. The present study developed a novel technique for growing ultra-long ZnS nanowires on thin-catalyst-coated substrates. ZnS nanowires were synthesized by chemical vapor deposition on a silicon substrate deposited by gold (* 5 nm in thickness) as the catalyst at 550, 600, 700, 750 and 800°C. The structural properties of the samples were investigated by X-ray diffraction, and the results showed that the fabricated nanowires have both wurtzite and zinc blend structures. The morphological properties of the nanowires were determined by scanning electron microscopy, and the results show that the substrate is thoroughly coated with 10 lm of zinc sulfide nanowires. Increasing the substrate temperature from 600 to 800°C increased the diameter of the nanowires and decreased the length. The growth mechanism of the nanowires was vapor-liquid-solid. The EDX spectra of this sample showed an absence of contamination, confirming the high purity of the ZnS nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.