Lipid droplets (LD) are suborganelles localized in the membrane of the Endoplasmic Reticulum (ER) that play an important role in metabolic functions. They consist of a core of neutral lipids surrounded by a monolayer of phosphoplipids and proteins resembling to an oil-in-water emulsion droplet. Many studies have been focused on the biophysical properties of these LDs. However, despite numerous efforts, we are lacking information on the mobility of phospholipids on the surface of LDs surface, although they may play a key role in the protein distribution. In this article, we developed a microfluidic setup that allows the formation of a triolein-buffer interface decorated with a phospholipid monolayer. Using this setup, we measured the motility of phospholipid molecules by performing Fluorescent Recovery After Photobleaching (FRAP) experiments for different lipidic compositions. The results of the FRAP measurements reveal that the motility of phospholipids is controlled by the monolayer packing decorating the interface.
Lipid droplets (LD) are organelles localized in the membrane of the endoplasmic reticulum (ER) that play an important role in many biological functions. Free LDs that have been released from the ER membrane and are present in the cytosol resemble an oil-in-water emulsion. The surface of an LD is coated with a phospholipid monolayer, and the core of an LD is composed of neutral lipids. Adipose differentiation-related protein (ADRP), also known as perilipin-2, is a protein that surrounds the LD, together with the phospholipid monolayer. ADRP molecules are involved in assisting in the storage of neutral lipids within LDs. In this article, we focus our interest on the influence of ADRP molecules on the 3D shape of bilayer-embedded LDs and the diffusion of phospholipids in the monolayer covering LDs. For this study, we employed two different microfluidic setups: one to produce and explore bilayer-embedded LDs and a second one to mimic the surface of a single LD. Using the first setup, we demonstrate that ADRP molecules stay preferentially localized on the surfaces of bilayer-embedded LDs, and we study their 3D-shape in the presence of ADRP. Using the second setup, we performed FRAP experiments to measure the phospholipid diffusion on a model LD surface as a function of the ADRP concentration. Although the presence of proteins on the LD surface minimally affects the phospholipid and protein motility, ADRP appears to have a significant effect on the 3D structure of LDs embedded in the bilayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.