Reaction network is a promising framework for representing complex systems of diverse and even interdisciplinary types. In this approach, complex systems appear as self-maintaining structures emerging from a multitude of interactions, similar to proposed scenarios for the origin of life out of autocatalytic networks. The formalism of chemical organization theory (COT) mathematically specifies under which conditions a reaction network is stable enough to be observed as a whole complex system. Such conditions specify the notion of organization, crucial in COT. In this paper, we show that the structure and operation of organizations can be advanced towards a formal framework of resilience in complex systems. That is, we show that there exist three fundamental types of change (state, process, and structural) defined for reaction networks, and that these perturbations not only provide a general representation of perturbations in the context of resilience but also pave the ground to formalize different forms of resilient responses. In particular, we show that decomposing the network’s operational structure into dynamically decoupled modules allows to formalize what is the impact of a perturbation and to what extent any potential compensation to that perturbation will be successful. We illustrate our approach with a toy model of a farm that operates in a sustainable way producing milk, eggs, and/or grains from other resources. With the help of simulations, we analyze the different types of perturbations and responses that the farm can undergo and how that affects its sustainable operation.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Washing hands, social distancing and staying at home are the preventive measures set in place to contain the spread of the COVID-19, a disease caused by SARS-CoV-2. These measures, although straightforward to follow, highlight the tip of an imbalanced socio-economic and socio-technological iceberg. Here, a System Dynamic (SD) model of COVID-19 preventive measures and their correlation with the 17 Sustainable Development Goals (SDGs) is presented. The result demonstrates a better informed view of the COVID-19 vulnerability landscape. This novel qualitative approach refreshes debates on the future of SDGS amid the crisis and provides a powerful mental representation for decision makers to find leverage points that aid in preventing long-term disruptive impacts of this health crisis on people, planet and economy. There is a need for further tailor-made and real-time qualitative and quantitative scientific research to calibrate the criticality of meeting the SDGS targets in different countries according to ongoing lessons learned from this health crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.